[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc

上传人:dealItalian200 文档编号:844257 上传时间:2019-02-21 格式:DOC 页数:16 大小:448.50KB
下载 相关 举报
[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc_第1页
第1页 / 共16页
[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc_第2页
第2页 / 共16页
[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc_第3页
第3页 / 共16页
[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc_第4页
第4页 / 共16页
[考研类试卷]考研数学(数学三)模拟试卷473及答案与解析.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、考研数学(数学三)模拟试卷 473 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设图形(a),(b),(c)如下:从定性上看,若函数f(x)在0,1 内可导,则 y=f(x),y= 0xf(t)dt 与 y=f(x)的图形分别是(A)(a),(b),(c)(B) (a),(c),(b)(C) (b),(a) ,(c)(D)(c),(a),(b)2 设 y=y(x)是由方程 y2+xy+x2+x=0 所确定的满足 y(一 1)=1 的隐函数,则=(A)1(B) 2(C)一 2(D)一 13 设 f(x)是区间 上的正值连续函数,且K=01f(arctanx)dx

2、.若把 I,J ,K 按其积分值从小到大的次序排列起来,则正确的次序是(A)I,J,K(B) J,K,I(C) K,I ,J(D)J,I ,K4 设函数 F(r)当 r0 时具有二阶连续导数,令 则当 x,y,z与 t 不全为零时 =5 设 A 是 54 矩阵,r(A)=4,则下列命题中错误的为(A)AX=0 只有零解(B) AATX=0 有非零解(C)对任何 5 维向量 , AX= 都有解(D)对任何 4 维向量 ,A TX= 都有无穷多解6 设 则下列矩阵中与 A 合同但不相似的是7 在区间(一 1,1) 上任意投一质点,以 X 表示该质点的坐标设该质点落在 (一1,1)中任意小区间内的概

3、率与这个小区间的长度成正比,则(A)X 与|X|相关,且相关系数 |=1(B) X 与|X|相关,但| 1(C) X 与|X|不相关,且也不独立(D)X 与|X|相互独立8 设总体 X 的方差存在,X 1,X 2,X n 是取自总体 X 的简单随机样本,其样本均值和样本方差分别为 则 EX2 的矩估计量是二、填空题9 设 f(x)在 x=0 处连续,且 则曲线 y=f(x)在点(0,f(0)处的切线方程为_10 设 y(x)是由 x2+xy+y=tan(xy)确定的隐函数,且 y(0)=0,则 y”(0)=_.11 设 u(x,y)=y 2F(3x+2y),若12 差分方程 yt+1 一 3y

4、t= 满足条件 y0=5 的特解是_13 设实对称矩阵 A= 要使得 A 的正,负惯性指数分别为 2,1,则 a 满足的条件是_。14 设(X,Y)服从右图梯形区域 D 上的均匀分布三、解答题解答应写出文字说明、证明过程或演算步骤。15 已知极限 求常数 a,b,c 16 求由曲线 y=3 一 x2 与圆 x2+(y 一 1)2=4 所围图形中含坐标原点那一部分的面积17 设 z=z(x,y)是由 9x254xy+90y26yzz2+18=0 确定的函数,求 z=z(x,y)的极值点和极值18 求幂级数 的收敛域 D 与和函数 S(x)19 设函数 f(x)在区间0, 4上连续,且 04f(x

5、)dx=0,求证:存在 (0,4)使得 f()+f(4 一 )=020 设 4 阶矩阵 A=(1, 2, 3, 4),方程组 Ax= 的通解为 (1,2,2,1) T+c(1,一2,4,0) T,c 任意 记 B=(3, 2, 1, 一 4)求方程组 Bx=1 一 2 的通解21 设 A 为 n 阶实对称矩阵,满足 A2=E,并且 r(A+E)=kn 求二次型 xTAx 的规范形 证明 B=E+A+A2+A3+A4 是正定矩阵,并求|B|22 设甲袋中有 2 个白球,乙袋中有 2 个红球,每次从各袋中任取一球,交换后放入另一袋,这样交换 3 次,求甲袋中白球数 X 的数学期望23 设总体 X

6、的概率密度为 其中 a,b(b0)都是未知参数又 X1,X 2,X n 是取自总体 X 的简单随机样本,试求 a 与 b 的最大似然估计量考研数学(数学三)模拟试卷 473 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 C【试题解析】 以(a)或(b)或 (c)为 y=f(x)的图形,从 0xf(t)dt 及 f(x)的几何意义来看其它两个图形是否分别是 y=0xf(t)dt 和 y=f(x)的图形 若(a) 是 y=f(x)的图形,则f(x)在0,1 单调上升且 f(x)0 (x 0,1),f(x)0, 0xf(t)dt0 ( (0,1)但(c)中

7、 x 轴下方有图像,故(a)不是 y=f(x)的图形,于是(A) ,(B) 均不正确 若(b)是y=f(x)的图形,则 f(x)有唯一最大值点 x0(0,1), f(x)在0,x 0单调上升,在x0,1单调下降,且 f(x)0(x(0,1) ,故 0xf(t)dt0 且单调上升(x 0,1) ,f(x)0(x(0,x 0),f(x 0)=0,f(x)0(x(x 0,1) 因此(C) 是正确的 若(c)是 y=f(x)的图形,则 f(x)在0,1单调下降,于是 f(x)0因此(D) 不正确,故应选(C)2 【正确答案】 D【试题解析】 由 y(x)所满足的隐函数方程知函数 y=y(x)在 x=一

8、 1 的邻域内任意次可导,将隐函数方程求导一次与两次可得 y(x)的一、二阶导函数 y(x)与 y”(x)分别满足 2yy+xy+y+2x+1=0, 2yy”+xy”+2(y) 2+2y+2=0, 在以上二式中分别令 x=一1 并利用 y(一 1)=1 可知 y(一 1)=0,y”( 一 1)=一 2再利用洛必达法则即可得到故应选(D)3 【正确答案】 D【试题解析】 用换元法化为同一区间上的定积分比较大小为此在中令 aresinx=t,由于 x: 且 dx=d(sint)=costdt,代入可得 与此类似,在K=01f(arctanx)dx 中令 arctanx=t,由于 c:01 且 dx

9、=d(tant)=代入可得4 【正确答案】 C【试题解析】 类似有 故应选(C)5 【正确答案】 C【试题解析】 (A) 对,因为 r(A)=未知数个数 4 (B) 对,因为 AAT 是 5 阶矩阵,而r(AAT)5 (C)错,因为存在 5 维向量 不可用 A 的列向量组表示,使得 AX=无解 (D)对,因为 r(AT)=方程个数 4,对任何 4 维向量 r(A T|)不会大干 46 【正确答案】 D【试题解析】 首先可排除(A),因为 r(A)=2,而(A)矩阵的秩为 1,所以它与 A 不合同两个实对称矩阵合同的充分必要条件是它们的特征值的正负性一样(即正,负数的个数对应相等)而相似的充分必

10、要条件是它们的特征值相同因此应该从计算特征值下手求出|EA|=(+3)( 一 3),A 的特征值为 0,一 3,3显然(C)中矩阵的特征值也是 0,一 3,3,因此它和 A 相似可排除剩下(B)(D)两个矩阵中,只要看一个 (D)中矩阵的特征值容易求,为 0一11因此它和 A 合同而不相似(也可计算出(B) 中矩阵的特征值为 0,1,4,因此它和 A 不合同)7 【正确答案】 C【试题解析】 依题设,X 在一 1,1上服从均匀分布,其概率密度为故cov(X,|X|)=0 ,从而 =0,X 与|X| 不相关于是可排除(A) 与(B) 对于任意实数a(0a 1) ,有 PXa= P|X|a=a又

11、PX a,|X|a=P|X|a=a,从而 PXa|X| aPX a,|X|a,即 所以 X 与|X|不独立,故应选(c)8 【正确答案】 B【试题解析】 根据矩估计量的定义来选择正确的选项 由于 EX2=DX+(EX)2,而DX 与 EX 的矩估计量分别是 所以 EX2 的矩估计量为 故选(B)二、填空题9 【正确答案】 【试题解析】 由极限与无穷小的关系,有所以曲线 y=f(x)在点(0,f(0)处的切线方程为 y 一 f(0)=f(0)(x 一 0),即10 【正确答案】 【试题解析】 将方程看成关于变量 x 的恒等式,两端同时对变量 x 求导数可得在(*)式中令 x=0,又 y(0)=0

12、,则有 y(0)=1 一 y(0),于是 y(0)= 将(*)式看成关于变量 x 的恒等式,两端同时对变量 x 求导数又可得在(*)式中令 x=0,又 y(0)=0,y(0)= 即得 2+2y(0)+y”(0)=一 y”(0),于是 y“(0)=一 1 一 y(0)=11 【正确答案】 【试题解析】 由 即 F(3x+1)=4x212 【正确答案】 【试题解析】 根据题设差分方程的特点,可设其通解形式为 yt=C3t+其中 A,B,C 是待定常数,于是,y t+1=把它们代入方程可得令即可确定常数 A=一1,B=17即差分方程的通解为 再利用条件 y0=5又可确定常数 C=6故所求特解是13

13、【正确答案】 a 0 或 4【试题解析】 A 的正,负惯性指数分别为 2 和 1 的充分必要条件是 |A|0(A 的对角线元素有正数,不可能特征值都负)求出 |A|=一 a2+4a, 得答案14 【正确答案】 【试题解析】 由于(X,Y)在 D 上服从均匀分布,故可用几何概率求解记将梯形区域 D 分成 12 个全等的小三角形此时可记S=12,S A=3三、解答题解答应写出文字说明、证明过程或演算步骤。15 【正确答案】 用洛必达法则由16 【正确答案】 先求抛物线与圆的交点 由 y=3 一 x2 与 x2+(y1)2=4 可得 x 2+(2一 x2)2=4,即 x2(x23)=0,从而 x=0

14、, 因此两曲线的交点分别为(0,3)x 轴下方圆的曲线方程为 图形关于 y 轴对称,因此17 【正确答案】 利用一阶全微分形式不变性,将方程求全微分即得 18xdx 一54(ydx+xdy)+180ydy 一 6zdy 一 6ydz 一 2zdz=0, 即 (18x 一 54y)dx+(180y 一 54x一 6z)dy 一(6y+2z)dz=0为求隐函数 z=z(x,y)的驻点,应解方程组可化简为 x=3y,由 可得 z=30y 一 9x=3y,代入 可解得两个驻点x=3,y=1,z=3 与 x=一 3,y=一 1,z=一 3 为判定 z=z(x,y)在两个驻点处是否取得极值,还需求 z=z

15、(x,y)在这两点的二阶偏导数:记P=(3,1,3),Q=(一 3,一 1,一 3),即可得出在 P 点处故 B2 一 AC=故在点(3,1)处 z=z(x,y)取得极小值 z(3,1)=3 类似可知在 Q 点处故 B2 一 AC=故在点(一 3,一 1)处 z=z(x,y)取得极大值z(一 3,一 1)=一 318 【正确答案】 易知幂级数 的收敛半径 R=1,且级数在收敛区间(一 1,1)的两个端点 x=一 1 与 x=1 处都收敛,从而级数的收敛域为 一1,1令 1一 t=u 作换元可得 利用求得的上述结果即知当 0|x|1 时 而 S(0)=019 【正确答案】 用反证法来证明本题 由

16、题设 f(x)在0,4上连续即知 f(4 一 x)在0,4上连续,从而其和 f(x)+f(4 一 x)也在0,4上连续若不存在 (0,4)使 f()+f(4 一 )=0,则 f(x)+f(4 一 x)或在(0,4) 内恒正,或在(0,4)内恒负,于是必有 04f(x)+f(4 一 x)dx0 但是 04f(x)dx=0 用换元 x=4 一 t 可得 04f(4 一 t)dt=0于是04f(x)+f(4 一 x)dx=0,由此得出的矛盾表明必存在 (0,4) 使得 f()+f(4 一 )=020 【正确答案】 首先从 AX= 的通解为(1,2,2,1) T+c(1,一 2,4,0) T 可得到下

17、列讯息: Ax=0 的基础解系包含 1 个解,即 4 一 r(A)=1,得 r(A)=3即r(1, 2, 3, 4)=3 (1,2,2,1) T 是 Ax= 解,即 1+22+23+4= (1,一 2,4,0) T 是 Ax=0 解,即 1 一 22+43=0 1, 2, 3 线性相关,r( 1, 2, 3)=2 显然 B(0,一 1,1,0) T=1 一 2,即(0,一 1,1,0) T 是 Bx=1 一 2 的一个解 由, B=(3, 2, 1, 一 4)=(3, 2, 1, 1+22+23),于是 r(B)=r(3, 2, 1, 1+22+23)=r(1, 2, 3)=2 则 Bx=0

18、的基础解系包含解的个数为 4 一 r(B)=2 个 1 一 22+43=0 说明(4,一 2,1,0) T 是 Bx=0 的解;又从B=(3, 2, 1, 1+22+23)容易得到 B(一 2,一 2,一 1,1) T=0,说明(一 2,一2,一 1,1) T 也是 Bx=0 的解于是 (4,一 2,1,0) T 和(一 2,一 2,一 1,1) T 构成Bx=0 的基础解系 Bx=12 的通解为: (0,一 1,1,0) T+c1(4,一 2,1,0)T+c2(一 2,一 2,一 1,1) T,c 1,c 2 任意21 【正确答案】 由于 A2=E,A 的特征值 应满足 2=1,即只能是 1

19、 和一1于是 A+E 的特征值只能是 2 和 0A+E 也为实对称矩阵,它相似于对角矩阵, 的秩等于 r(A+E)=k于是 A+E 的特征值是 2(k 重)和 0(n 一 k 重),从而 A 的特征值是 1(k 重) 和一 l(n 一 k 重) A 的正,负关系惯性指数分别为 k 和 n 一k,x TAx 的规范形为 y 12+y22+yk2 一 yk+12 一一 yn2 B 是实对称矩阵由A2=E,有 B=3E+2A,B 的特征值为 5(k 重)和 1(n 一 k 重)都是正数因此 B 是正定矩阵 |B|=5 k.1n-k=5k22 【正确答案】 设 Ai=第二次交换后甲袋有 i 个白球,i

20、=0,1,2由于经过第一次交换,甲、乙两袋中各有一个红球,一个白球,故又设X=k表示三次交换后甲袋中的白球数,k=0,1,2则 PX=0|A0=0,PX=0|A 1= ,PX=0|A2=0,PX=1|A 0=1,PX=1|A 1= ,PX=1|A2=1,PX=2|A 0=0, PX=2|A1= ,PX=2|A2=0,所以 PX=0=PX=0|A1P(A1)= PX=1=PX=1|A0P(A0)一 PX=1|A1P(A1)+PX=1|A2P(A2)= PX=2=PX=2|A1P(A 1)=,故 X 的概分布为23 【正确答案】 设 x1,x 2,x n 为样本 X1,X 2,X n 的观测值,则似然函数L(x1,x 2, ,x n;a ,b) L(a,b)为由于 nb0,故lnL(a,b) 与 L(a,b) 关于 a 是增函数,但是又因只有 amin(x 1,x 2,x n)时,L(a,b) 才不等于零,故 a 可取的最大值为 min(x1,x 2,x n)再根据方程于是 a,b 的最大似然估计量分别为

展开阅读全文
相关资源
猜你喜欢
  • EN 4678-2011 en Aerospace series - Weldments and brazements for aerospace structures - Joints of metallic materials by laser beam welding - Quality of weldments《航空航天系列 航空航天结构焊件和铜焊 .pdf EN 4678-2011 en Aerospace series - Weldments and brazements for aerospace structures - Joints of metallic materials by laser beam welding - Quality of weldments《航空航天系列 航空航天结构焊件和铜焊 .pdf
  • EN 4681-001-2012 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 001 Technical specification《航空航天系列 电缆 电气 通用 铝或铜包.pdf EN 4681-001-2012 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 001 Technical specification《航空航天系列 电缆 电气 通用 铝或铜包.pdf
  • EN 4681-001-2017 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 001 Technical Specification.pdf EN 4681-001-2017 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 001 Technical Specification.pdf
  • EN 4681-002-2012 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 002 General《航空航天系列 电缆 电气 通用 在铝或铜包铝导体 第002部分 通用》.pdf EN 4681-002-2012 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 002 General《航空航天系列 电缆 电气 通用 在铝或铜包铝导体 第002部分 通用》.pdf
  • EN 4681-005-2015 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 005 AZ family single for use in low pressure atm.pdf EN 4681-005-2015 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 005 AZ family single for use in low pressure atm.pdf
  • EN 4681-006-2015 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 006 AZA family single and multicore assembly for.pdf EN 4681-006-2015 en Aerospace series - Cables electric general purpose with conductors in aluminium or copper-clad aluminium - Part 006 AZA family single and multicore assembly for.pdf
  • EN 4683-2011 en Aerospace series - Steel FE-WM 3504 (X4CrNiMo16-5-1) - Air melted - Filler metal for welding - Wire and rod《航空航天系列 FE-WM 3504 (X4CrNiMo16-5-1)型钢材 敞熔式 填充焊接金属 线材及杆材航空.pdf EN 4683-2011 en Aerospace series - Steel FE-WM 3504 (X4CrNiMo16-5-1) - Air melted - Filler metal for welding - Wire and rod《航空航天系列 FE-WM 3504 (X4CrNiMo16-5-1)型钢材 敞熔式 填充焊接金属 线材及杆材航空.pdf
  • EN 4685-2011 en Aerospace series - Titanium Ti10V2Fe3Al - Bars - D  110 mm - Rm 1 240 MPa《航空航天系列 Ti10V2Fe3Al型钛 棒材 D 110 mm R 1 240 Mpa》.pdf EN 4685-2011 en Aerospace series - Titanium Ti10V2Fe3Al - Bars - D 110 mm - Rm 1 240 MPa《航空航天系列 Ti10V2Fe3Al型钛 棒材 D 110 mm R 1 240 Mpa》.pdf
  • EN 4687-2012 en Aerospace series - Paints and varnishes - Chromate free non corrosion inhibiting two components cold curing primer for military application《航空航天系列 铬酸-油漆和清漆免费非腐蚀抑制两个.pdf EN 4687-2012 en Aerospace series - Paints and varnishes - Chromate free non corrosion inhibiting two components cold curing primer for military application《航空航天系列 铬酸-油漆和清漆免费非腐蚀抑制两个.pdf
  • 相关搜索

    当前位置:首页 > 考试资料 > 大学考试

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1