[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc

上传人:刘芸 文档编号:852449 上传时间:2019-02-22 格式:DOC 页数:12 大小:410KB
下载 相关 举报
[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc_第1页
第1页 / 共12页
[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc_第2页
第2页 / 共12页
[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc_第3页
第3页 / 共12页
[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc_第4页
第4页 / 共12页
[考研类试卷]考研数学三(一元函数积分学)模拟试卷22及答案与解析.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、考研数学三(一元函数积分学)模拟试卷 22 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 曲线 y=x(x 一 1)(2 一 x)与 x 轴所围成的图形面积可表示为( )(A)一 02x(x 一 1)(2 一 x)dx(B) 01x(x 一 1)(2 一 x)dx 一 12x(x 一 1)(2 一 x)dx(C)一 01x(x 一 1)(2 一 x)dx+12x(x 一 1)(2 一 x)dx(D) 02x(x 一 1)(2 一 x)dx二、填空题2 =_3 xcos2xdx=_4 设 f(x)在0,1上连续,且 f(x)= +01xf(x)dx,则 f(x)=

2、三、解答题解答应写出文字说明、证明过程或演算步骤。5 求6 求7 求8 求9 设 f(lnx)= 求f(x)dx 10 设 (x)=0x(x 一 t)2f(t)dt,求 “(x),其中 f(x)为连续函数11 设 f(x)= 一 01f(x)dx,求 01f(x)dx11 计算下列定积分:12 13 14 15 16 17 18 19 20 求21 求22 计算 1+22 设 f(x)为连续函数,23 证明: 0xf(sinx)dx=24 证明: 02f(|sinx|)dx=25 求26 设 f(x)在区间a,b上二阶连续可导,证明:存在 (a,b),使得 abf(x)dx=27 求曲线 y

3、3 一|x 2 一 1|与 x 轴围成的封闭图形绕 y=3 旋转所得的旋转体的体积考研数学三(一元函数积分学)模拟试卷 22 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 C【试题解析】 曲线 y=x(x 一 1)(2 一 x)与 x 轴的三个交点为 x=0,x=1 ,x=2,当0xl 时,y0;当 1x2 时,yx,所以围成的面积可表示为 (C)的形式,选(C)【知识模块】 一元函数积分学二、填空题2 【正确答案】 【试题解析】 【知识模块】 一元函数积分学3 【正确答案】 【试题解析】 【知识模块】 一元函数积分学4 【正确答案】 【试题解析】

4、 【知识模块】 一元函数积分学三、解答题解答应写出文字说明、证明过程或演算步骤。5 【正确答案】 【知识模块】 一元函数积分学6 【正确答案】 【知识模块】 一元函数积分学7 【正确答案】 【知识模块】 一元函数积分学8 【正确答案】 【知识模块】 一元函数积分学9 【正确答案】 由 f(lnx)=由C1=1+C2,取 C2=C 得【知识模块】 一元函数积分学10 【正确答案】 (x)=x 20xf(t)dt 一 2x0xtf(t)dt+0xt2f(t)dt, (x)=2x 0xf(t)dt+x2f(x)一20xtf(t)dt 一 2x2f(x)+x2f(x) =2x0xf(t)dt 一 20

5、xtf(t)dt, “(x)=2x 0xf(t)dt+2xf(x)一 2xf(x)=20xf(t)dt, “(x)=2f(x)【知识模块】 一元函数积分学11 【正确答案】 令 01f(x)dx=A,对 f(x)= 一 01f(x)如两边积分得【知识模块】 一元函数积分学【知识模块】 一元函数积分学12 【正确答案】 【知识模块】 一元函数积分学13 【正确答案】 【知识模块】 一元函数积分学14 【正确答案】 【知识模块】 一元函数积分学15 【正确答案】 【知识模块】 一元函数积分学16 【正确答案】 【知识模块】 一元函数积分学17 【正确答案】 【知识模块】 一元函数积分学18 【正确

6、答案】 【知识模块】 一元函数积分学19 【正确答案】 【知识模块】 一元函数积分学20 【正确答案】 【知识模块】 一元函数积分学21 【正确答案】 【知识模块】 一元函数积分学22 【正确答案】 【知识模块】 一元函数积分学【知识模块】 一元函数积分学23 【正确答案】 令 I=0xf(sinx)dx,则 I=0xf(sinx)dx 0( 一 t)f(sint)(一 dt)=0f( 一 t)f(sint)dt=0( 一 x)f(sinx)dx=0f(sinx)dx 一 0xf(sinx)dx=0f(sinx)dx 一I,则 I=0xf(sinx)dx= 0f(sinx)dx= f(sinx

7、)dx【知识模块】 一元函数积分学24 【正确答案】 02f(|sinx|)dx=一 f(|sinx|)dx=20f(|sinx|)dx=20f(sinx)dx= f(sinx)dx【知识模块】 一元函数积分学25 【正确答案】 【知识模块】 一元函数积分学26 【正确答案】 令 F(x)=axf(t)dt,则 F(x)在a,b上三阶连续可导,取 x0= ,由泰勒公式得 F(a)一 F(x0)+F(x0)(a 一 x0)+ (a 一 x0)3, 1(a,x 0),F(b)一 F(x0)+F(x0)(6 一 x0)+ (b 一 x0)3, 2(x0,b),两式相减得 F(b)一 F(a)=F(x

8、0)(b 一 a)+ F“(1)+F“(2),即abf(x)dx=(b 一 a) f“(1)+f“(2),因为 f“(x)在a,b上连续,所以存在 1, 2 (a,b),使得 f“()= f“(1)+f“(2),从而 abf(x)dx=(b 一 a)【知识模块】 一元函数积分学27 【正确答案】 取x,x+dx 0,1,d 1=32 一(x 21)2dx=(8+2x2 一 x4)dx,V 1=01d1=01(8+2x2 一 x4)dx,x,x+dx 1,2,d 2=32 一(1 一 x2)2dx=(8+2x2 一 x4)dx,V 2=12d2=12(8+2x2 一 x4)dx,则所求体积为 V=2(V1+V2)=202(8+2x2 一 x4)dx=【知识模块】 一元函数积分学

展开阅读全文
相关资源
猜你喜欢
  • DIN EN 15586-2008 Textiles - Methods of testing the fibre proof properties of fabrics Rubbing test German version EN 15586 2008《纺织物 织物的纤维坚牢性能的测试方法 研磨试验》.pdf DIN EN 15586-2008 Textiles - Methods of testing the fibre proof properties of fabrics Rubbing test German version EN 15586 2008《纺织物 织物的纤维坚牢性能的测试方法 研磨试验》.pdf
  • DIN EN 15587-2014 Cereals and cereal products - Determination of Besatz in wheat (Triticum aestivum L ) durum wheat (Triticum durum Desf ) rye (Secale cereale L ) and feed barley (.pdf DIN EN 15587-2014 Cereals and cereal products - Determination of Besatz in wheat (Triticum aestivum L ) durum wheat (Triticum durum Desf ) rye (Secale cereale L ) and feed barley (.pdf
  • DIN EN 1559-1-2011 Founding - Technical conditions of delivery - Part 1 General German version EN 1559-1 2011《铸造 交货技术条件 第1部分 总则 德文版本EN 1559-1-2011》.pdf DIN EN 1559-1-2011 Founding - Technical conditions of delivery - Part 1 General German version EN 1559-1 2011《铸造 交货技术条件 第1部分 总则 德文版本EN 1559-1-2011》.pdf
  • DIN EN 1559-2-2014 Founding - Technical conditions of delivery - Part 2 Additional requirements for steel castings German version EN 1559-2 2014《铸造 交货技术条件 第2部分 钢铸件附加要求》.pdf DIN EN 1559-2-2014 Founding - Technical conditions of delivery - Part 2 Additional requirements for steel castings German version EN 1559-2 2014《铸造 交货技术条件 第2部分 钢铸件附加要求》.pdf
  • DIN EN 1559-3-2012 Founding - Technical conditions of delivery - Part 3 Additional requirements for iron castings German version EN 1559-3 2011《铸造 运输技术条件 第3部分 铁铸造的附加要求 德文版 EN 1559-.pdf DIN EN 1559-3-2012 Founding - Technical conditions of delivery - Part 3 Additional requirements for iron castings German version EN 1559-3 2011《铸造 运输技术条件 第3部分 铁铸造的附加要求 德文版 EN 1559-.pdf
  • DIN EN 1559-4-2015 Founding - Technical conditions of delivery - Part 4 Additional requirements for aluminium alloy castings German version EN 1559-4 2015《铸造 交货技术条件 第4部分 铝合金铸件的附加要求.pdf DIN EN 1559-4-2015 Founding - Technical conditions of delivery - Part 4 Additional requirements for aluminium alloy castings German version EN 1559-4 2015《铸造 交货技术条件 第4部分 铝合金铸件的附加要求.pdf
  • DIN EN 1559-5-2017 Founding - Technical conditions of delivery - Part 5 Additional requirements for magnesium alloy castings German version EN 1559-5 2017《铸造 交货技术条件 第5部分 镁合金铸件的附加要求.pdf DIN EN 1559-5-2017 Founding - Technical conditions of delivery - Part 5 Additional requirements for magnesium alloy castings German version EN 1559-5 2017《铸造 交货技术条件 第5部分 镁合金铸件的附加要求.pdf
  • DIN EN 1559-6-1999 Founding - Technical conditions of delivery - Part 6 Additional requirements for zinc alloy castings German version EN 1559-6 1998《铸造 交货技术条件 第6部分 锌合金铸件的附加要求》.pdf DIN EN 1559-6-1999 Founding - Technical conditions of delivery - Part 6 Additional requirements for zinc alloy castings German version EN 1559-6 1998《铸造 交货技术条件 第6部分 锌合金铸件的附加要求》.pdf
  • DIN EN 15590-2011 Solid recovered fuels - Determination of the current rate of aerobic microbial activity using the real dynamic respiration index German version EN 15590 2011《固体回收.pdf DIN EN 15590-2011 Solid recovered fuels - Determination of the current rate of aerobic microbial activity using the real dynamic respiration index German version EN 15590 2011《固体回收.pdf
  • 相关搜索

    当前位置:首页 > 考试资料 > 大学考试

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1