2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc

上传人:medalangle361 文档编号:1137229 上传时间:2019-05-08 格式:DOC 页数:6 大小:1.24MB
下载 相关 举报
2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc_第1页
第1页 / 共6页
2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc_第2页
第2页 / 共6页
2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc_第3页
第3页 / 共6页
2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc_第4页
第4页 / 共6页
2019高中数学第一章导数及其应用单元检测新人教B版选修2_2.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、1第一章导数及其应用单元检测(时间:90 分钟 满分:100 分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分在每小题给出的四个选项中,只有一项是符合题目要求的)1若 00lim1xffx,则 f (x0)等于( )A 32 B C1 D12 4dx等于( )A2ln 2 B2ln 2 Cln 2 Dln 23若对于任意 x,有 f (x)4 x3, f(1)3,则此函数的解析式为( )A f(x) x41B f(x) x42C f(x) x41D f(x) x424抛物线 y在点 Q(2,1)处的切线方程为( )A x y10B x y30C x y10D x y105函数

2、 f(x) x32 x3 的图象在 x1 处的切线与圆 x2 y28 的位置关系是( )A相切B相交且过圆心C相交但不过圆心D相离6若 0k(2x3 x2)dx0,则 k 等于( )A0 B1 C0 或 1 D以上都不对7已知 f(x) x3 ax2( a6) x1 有极大值和极小值,则 a 的取值范围为( )A1 a2B3 a6C a1 或 a2D a3 或 a68函数 f(x)的图象如图所示,下列数值排序正确的是( )2A0 f (2) f (3) f(3) f(2)B0 f (3) f(3) f(2) f (2)C0 f (3) f (2) f(3) f(2)D0 f(3) f(2) f

3、 (2) f (3)9已知点 P 在曲线 4=e1xy上, 为曲线在点 P 处的切线的倾斜角,则 的取值范围是( )A 04, B 42,C 32, D 3,10若曲线12=yx在点( a,12-)处的切线与两个坐标轴围成的三角形的面积为 18,则 a 等于( )A64 B32C16 D8二、填空题(本大题共 5 小题,每小题 5 分,共 25 分把答案填在题中的横线上)11经过点(2,0)且与曲线 1=yx相切的直线方程为_12三次函数 f(x),当 x1 时有极大值 4,当 x3 时有极小值 0,且函数图象过原点,则 f(x)_.13在区间 2, 上,函数 f(x) x2 px q 与 2

4、1()=g在同一点处取得相同的极小值,那么函数 f(x)在 1, 上的最大值为_14函数 y x2(x0)的图象在点( ak, 2)处的切线与 x 轴交点的横坐标为 ak1 ,其中 kN ,若 a116,则 a1 a3 a5的值是_15下列四个命题中正确的命题的个数为_若 ()=fx,则 f (0)0;若函数 f(x)2 x21 图象上与点(1,3)邻近的一点为(1 x,3 y),则 4+2x;加速度是动点位移函数 s(t)对时间 t 的导数;曲线 y x3在(0,0)处没有切线3三、解答题(本大题共 2 小题,共 25 分解答时应写出文字说明、证明过程或演算步骤)16(10 分)求由曲线 y

5、2 x x2, y2 x24 x 所围成的封闭图形的面积17(15 分)已知函数 f(x) x3 ax2 bx c 在 3与 x1 时都取得极值(1)求 a, b 的值及函数 f(x)的单调区间;(2)若对 x1,2,不等式 f(x) c2恒成立,求 c 的取值范围4参考答案1. 答案:D 原等式可化为 00limxfxf f (x0)1,因此 f (x0)1.2. 答案:D 44221d=ln |xln 4ln 2ln 2.3. 答案:D f (x)4 x3, f(x) x4 k.又 f(1)3, k2, f(x) x42.4. 答案:A y, =21|y,又切线过点 Q(2,1),切线方程

6、为y1 x2,即 x y10.5. 答案:C 切线方程为 x y10,圆心到直线的距离为 12,所以直线与圆相交但不过圆心6. 答案:C 因为( x2 x3)2 x3 x2,所以 0k(2x3 x2)dx( x2 x3) 0|k k2 k30.所以 k0 或 k1.7. 答案:D f (x)3 x22 ax a6,因为 f(x)既有极大值又有极小值,所以 4 a243( a6)0,即 a23 a180.解得 a6 或 a3.8. 答案:B f (2), f (3)是 x 分别为 2,3 时对应图象上点的切线的斜率, f(3) f(2) f, f(3) f(2)是图象上 x 为 2 和 3 对应

7、两点连线的斜率,故选 B.9. 答案:D 24e1xy,1 y 0,即曲线在点 P 处的切线的斜率1 k0,1tan 0,又 0,), 34 .10. 答案:A 2yx,切线斜率321ka,切线方程是1322ya(x a),令 x0,得123=a,令 y0, x3 a,三角形的面积是S1218,解得 a64.故选 A.11. 答案: x y20 设切点为( x0, 1),则 0201=x, x01,即切点为5(1,1),斜率为1,直线方程为 x y20.12. 答案: x36 x29 x 设 f(x) ax3 bx2 cx d,由题意,知0, 14,30.fff解得1,.abcd故 f(x)

8、x36 x29 x.13. 答案:4 由 g (x)0 得 x1.此时 g(x)3,故函数 f(x)在 x1 处取极小值 3,从而可求得 p2, q4.故 f(x) x22 x4,在 ,2上的最大值为 4.14. 答案:21 y ( x2)2 x,函数 y x2(x0)在点( ak, 2)处的切线方程为2=()kkyax,令 y0 得 ak1 ak,又 a1 16, a3 1a2 4a14, a514a31, a1 a3 a5164121.15. 答案:1 ()=fx在 x0 处无导数,因此不对;速度是动点位移函数 s(t)对时间 t 的导数,因此不对; y x3在(0,0)处的切线方程为 y

9、0,故不对16. 答案:分析:先求两曲线的交点,然后根据图形,应用定积分求面积解:由2,4yx得 x10, x22.由图可知,所求图形的面积为S 20(2x x2)dx 20(2x x2)dx 20(2x24 x)dx,因为|20 2x2 4x dx|231x 2x x2, 322 x24 x,所以 2323200| |S.17. 答案:分析:由 ()=f, f (1)0 求出 a, b,再由 f (x)求单调区间,对于(2)可转化为求 f(x)的最大值来求解6解:(1) f(x) x3 ax2 bx c, f (x)3 x22 ax b,由 214()=039fab,f (1)32 a b0,得 1, b2. f (x)3 x2 x2(3 x2)( x1),当 x 变化时, f (x), f(x)变化状态如下表:x2,323,11 (1,)f (x) 0 0 f(x) 极大值 极小值 所以函数 f(x)的增区间为 2,3和(1,),减区间为 2,13.(2)f(x) x3 12x22 x c, x 1,2,当 x时, +7fc为极大值,而 f(2)2 c,则 f(2)2 c 为最大值,要使 f(x) c2(x 1,2)恒成立只需c2 f(2)2 c,解得 c1 或 c2.所以 c 的取值范围是 c1 或 c2.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1