1、116.1 分式及其基本性质【学习目标】 1.理解分式的概念及分式的基本性质。2.会利用分式的基本性质进行通分和约分。3.体会类比的思想方法并会解决实际生活中的问题。【重点】分式的基本性质。【难点】会利用分式的基本性质进行通分和约分。【使用说明与学法指导】1、认真阅读课本 P2-P3,初步理解分式的概念,掌握分式的基本性质;再针对预习案 二次阅读教材,解 答预习案中的问题;疑惑随时记录在“我的疑惑”栏内,准备课上讨论质疑;2、通过预习能够掌握分式的基本性质并会进行通分和约分,并能拓展和尝试总结规律。预 习 案1、预习自 学1、下列代数式中哪些是分式,哪些是整式?(1) (2) (3 ) (4)
2、xbaacb23x(5) (6) (7) 1xyzx5通过练习:你能总结并说出区分整式和分式需要注意的地方吗?2、类比分数的基本性质,请你说出分式的基本性质与其异同点。导 学 案 装 订 线 2二、我的疑惑_探 究 案探究点一:分式的概念。例 1 当 取什么值时,下列分式有意义?x(1) ; (2)39212x探究点 二:分式的基本性质。例 2 约分(1) =_= 239yx(2) =_= 2)(56ba(3)=_=_2)(yx(4)=_=_2)(例 3 通分(1) 与 (2) 与32abc252)(1yx训 练 案31.下列各式中,是分式的有( )3yx12axba3yx21A.5 个 B.4 个 C.3 个 D.2 个2.无论 x 取何值,下列分式中总有意义的是( )A. B. C. D.212)(x2x2x3.分式 有意义,则( )2aA.a=1 B.a =-1 C.a D.a = 114.约分(1) = (2) =x323286ba(3) = (4) =cab1n2yx5通分:(1) , ; (2) , 26xab9yc21a26拓展延伸 (选做)1、不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1) =_ (2) =_yx23ba7.0542.已知: ,求 的值0346xyzxyz