【考研类试卷】统计学考研真题精选6及答案解析.doc

上传人:sofeeling205 文档编号:1404335 上传时间:2019-12-05 格式:DOC 页数:24 大小:287KB
下载 相关 举报
【考研类试卷】统计学考研真题精选6及答案解析.doc_第1页
第1页 / 共24页
【考研类试卷】统计学考研真题精选6及答案解析.doc_第2页
第2页 / 共24页
【考研类试卷】统计学考研真题精选6及答案解析.doc_第3页
第3页 / 共24页
【考研类试卷】统计学考研真题精选6及答案解析.doc_第4页
第4页 / 共24页
【考研类试卷】统计学考研真题精选6及答案解析.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、统计学考研真题精选 6及答案解析(总分:120.00,做题时间:150 分钟)一、单项选择题(总题数:27,分数:27.00)1.在抽样推断中,样本统计量是( )(分数:1.00)A.未知但确定的量B.个已知的量C.随机变量D.唯一的2.在一个饭店门口等待出租车的时间是左偏的,均值为 12分钟,标准差为 3分钟。如 果从饭店门口随机抽取 100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从 ( )。(分数:1.00)A.正态分布,均值为 12分钟,标准差为 0.3分钟B.正态分布,均值为 12分钟,标准差为 3分钟C.左偏分布,均值为 12分钟,标准差为 3分钟D.左偏分布,均值为

2、12分钟,标准差为 0.3分钟3.设总体 是来自总体 X的样本, 服从的分布是( )。(分数:1.00)A.t(15)B.t(16)C.X2(15)D.N(0,1)4.1000名学生参加某课程的考试,平均成绩是 82分,标准差是 8分,从学生中随机抽取 100个同学作为样本,则样本均值的数学期望和抽样分布的标准差分别为( )。(分数:1.00)A.82, 8B.82, 0.8C.82, 64D.86,15.某批产品的合格率为 90%,从中抽出 n= 100的简单随机样本,以样本合格率 估计 总体合格率P,则 的期望值和标准差分别为( )。(分数:1.00)A.0.9, 0.09B.0.9, 0

3、.03C.0.9, 0.3D.0.09,0.36.若总体服从均值为 标准差为 的正态分布,从中抽出一个容量为 10的简单随机 样本,则样本平均的抽样分布为( )。(分数:1.00)A.B.C.D.7.有一个样本容量为 10的样本,其均值为 1300小时,方差为 8175. 56。若按放回抽样 计算,则样本均值的标准误差是( )。(分数:1.00)A.28. 35 小时B.28. 59 小时C.29. 61 小时D.30. 02 小时8.下面对矩估计法中原点矩和中心矩表述正确的是( )。(分数:1.00)A.样本的一阶原点矩就是样本的原数据值B.样本的一阶原点矩就是样本的均值C.样本的二阶原点矩

4、就是样本的均值D.样本的二阶中心矩就是样本的标准差9.用简单随机重复抽样方法选择样本单位,如果要使抽样平均误差降低 50%,则抽样 单位数需要增加到原单位数的( )。(分数:1.00)A.2倍B.3倍C.4倍D.1倍10.样本统计量是( )。(分数:1.00)A.确定的B.唯一的C.随机变量D.确定变量11.设总体 X-X2(n),X1,X 2,.,X n是样本, ?是样本均值,则( )。(分数:1.00)A.B.C.D.12.设 X1,X 2,X 3,X 3是取自总体 X-N 的样本,则 Y=(X 3-X4)/ 服从( )分布。(分数:1.00)A.t(2)B.t(3)C.F(2,2)D.N

5、(0,1)13.某地区居民收入的方差为 900,随机抽取 400户调查,则调查户平均收人的方差为( ).(分数:1.00)A.30B.900C.300D.2.2514. 假定 10亿人口大国和 100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国的 1%人口,则抽样误差( )。(分数:1.00)A.两者相等B.前者大于后者C.前者小于后者D.不能确定15.设随机变量 X-t(n),其中,n1,令 ,则( )。(分数:1.00)A.B.C.D.16.当抽样单位数增加 3倍时,随机重复抽样平均误差比原来( )。(分数:1.00)A.减少 1/2B.增加 1/2C.减少 1/3D.

6、增加 1/317.重复抽样与不重复抽样相比,其样本均值抽样分布的标准差( )。(分数:1.00)A.重复抽样大B.不重复抽样大C.一样大D.不一定18.从均值为 ,方差为 根据中心极限定理可知,当样本 容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值和方差分别为( )。(分数:1.00)A.B.C.D.19.从一个均值 =20,标准差 的总体中随机选取容量为 n=36的样本。假定该总体并不是很偏,则样本均值 小于 19. 8的近似概率为( )。(分数:1.00)A.0.1268B.0.1587C.0.2735D.0.632420.假设总体服从泊松分布,从此总体中抽取容量为 100的样

7、本,则样本均值的抽样分布( )。(分数:1.00)A.服从泊松分布B.服从 X2分布C.抽样分布无法得到D.近似服从正态分布21.从服从正态分布的无限总体中分别抽取容量为 7, 20, 80的样本,当样本容量增大,样本均值的数学期望_ ,标准差_ 。( )(分数:1.00)A.保持不变;增加B.保持不变;减小C.增加;保持不变D.减小;保持不变22.某厂家生产的灯泡寿命的均值为 1000小时,标准差为 4小时。如果从中随机抽取 16只灯泡进行检测,则样本均值( )。(分数:1.00)A.抽样分布的标准差为 1小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为 1000小时D.抽样分布服从

8、正态分布,均值为 1000小时23.假设总体比例为 0.2,从此总体中抽取容量为 100的样本,则样本比例的标准差为( )。(分数:1.00)A.0.2B.0.02C.0.04D.0.1624.大样本的样本比例的抽样分布服从( )。(分数:1.00)A.正态分布B.t分布C.F分布D.X2分布25. 设总体均值为 100,总体方差为 25,在大样本情况下,样本平均数的分布都是服从或近似服从( )。(分数:1.00)A.N(100)B.N(100,C.D.26.随机变量 X和 Y相互独立且都服从正态分布 ?随机变量 X和 Y相互独立且都服从正态分布,则统计量 服从_分布,其参数为_。( )(分数

9、:1.00)A.t;8B.t;9C.正态分布;(0,1)D.X2分布;927.设 X1,X 2,.,X 5为来自总体 XN(0,1)的简单随机样本,为使统计量 (分数:1.00)A.2/3B.3/2C.D.二、多项选择题(总题数:4,分数:8.00)28.下列关于抽样平均误差、总体变异程度及样本容量之间关系的陈述,正确的有( )。(分数:2.00)A.总体变异程度一定时,样本容量愈大,抽样平均误差愈大B.总体变异程度一定时,样本容量愈大,抽样平均误差愈小C.样本容量一定时,总体变异程度愈大,抽样平均误差愈大D.样本容量一定时,总体变异程度愈大,抽样平均误差愈小E.样本容量一定时,总体变异程度不

10、影响抽样平均误差的大小29.以下关 X2分布的描述中,哪些是正确的?( )(分数:2.00)A.其变量值始终为正B.属于左偏分布C.随着自由度的增大趋于对称D.具有可加性E.可用于单因素方差分析30.下列关于统计量的表述中,正确的有( )。(分数:2.00)A.统计量是样本的函数B.估计同一总体参数可以用多个不同统计量C.统计量是随机变量D.统计量不能含有任何总体参数E.统计量不能含有总体未知的参数31.下列属于次序统计量的有( )。(分数:2.00)A.中位数B.均值C.四分位数D.极差E.样本方差三、判断题(总题数:5,分数:10.00)32.设总体 。( )(分数:2.00)A.正确B.

11、错误33.t分布与正态分布的区别是前者的分布形态是不对称的,后者是对称的。( )(分数:2.00)A.正确B.错误34.样本均值的标准差也称抽样估计的标准误差,可用公式表示为 .( )(分数:2.00)A.正确B.错误35.样本均值的抽样分布形式仅与样本量 n的大小有关。( )(分数:2.00)A.正确B.错误36.分别来自两个总体的两个样本,当样本容量足够大时,样本均值之差的抽样分布服 从正态分布。( )(分数:2.00)A.正确B.错误四、简答题(总题数:7,分数:35.00)37.简述中心极限定理及意义。(分数:5.00)_38.简述样本均值和总体分布之间的关系,样本均值分布在统计推断中

12、的具体应用。(分数:5.00)_39.何谓统计量?X 2分布、t 分布、F 分布是不是统计量?它们在统计分析中各有何用处?(分数:5.00)_40.什么是抽样平均误差?影响抽样平均误差的因素有哪些?(分数:5.00)_41.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?(分数:5.00)_42.什么是 X2分布?请简述 X2分布的特点。(分数:5.00)_43.重复抽样和不重复抽样相比,抽样均值分布的标准差有什么不同?(分数:5.00)_五、计算题(总题数:6,分数:40.00)44.从正态总体 N(3.4,6 2)中抽取容量为 n的样本,如果要求其样本均值位于区间 (1.

13、4, 5.4)内的概率不小于 0.95,问样本容量 n至少应取多大?附表:标准正态分布表(分数:5.00)_45.某保险公司为 50个集体投保人提供医疗保险,假设他们医疗花费相互独立,且花费(单位为百元)服从相同的分布律 当花费超过百元时,保险公司应支付超过百元的部分;当花费不超过百元时,由患者自己负担费用。如果以总支付费 X的 期望值 E(X)作为预期的总支付费,那么,保险公司应收取总保险费为(1+)E(X),其中 设 为相对附加保费。为使公司获利的概率超过 95%,附加保费 0至少应为多少?(已知 (1.41) =0.92, (1.65) =0.95)(分数:5.00)_46.设总体 xN

14、(,4),x 1,x2,.,xn是取自总体 x的简单随机样本。试问 n取多 大,才能使得(分数:5.00)_47.甲、乙两家化肥厂生产化肥。甲厂平均每小时生产 100袋化肥,且服从正态分布, 标准差为 25袋;乙厂平均每小时生产 110袋化肥,也服从正态分布,标准差为 30袋。现从 甲、乙两厂各随机抽取 5小时计算单位时间的产量,问出现乙厂比甲厂单位时间产量少的概 率为多大? (分数:5.00)_48.设总体 X服从正态分布 为来自总体 X的简单随机 样本,试求下列概率:(分数:15)(1) (分数:5)_(2) (分数:5)_(3) (分数:5)_49.假设(X 1,X 2,.,X 9)和(

15、Y 1,Y2,.,Y 16)为来自总体 N(,2 2)的两个相互独立的简单随机样本,令求满足下列各式的常数 a,b和 c;(分数:5.00)_统计学考研真题精选 6答案解析(总分:120.00,做题时间:150 分钟)一、单项选择题(总题数:27,分数:27.00)1.在抽样推断中,样本统计量是( )(分数:1.00)A.未知但确定的量B.个已知的量C.随机变量 D.唯一的解析:统计量是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的 一个量,由于抽样是随机的,因此统计量是样本的函数,是随机变量。2.在一个饭店门口等待出租车的时间是左偏的,均值为 12分钟,标准差为 3分钟。如 果

16、从饭店门口随机抽取 100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从 ( )。(分数:1.00)A.正态分布,均值为 12分钟,标准差为 0.3分钟 B.正态分布,均值为 12分钟,标准差为 3分钟C.左偏分布,均值为 12分钟,标准差为 3分钟D.左偏分布,均值为 12分钟,标准差为 0.3分钟解析:中心极限定理:设从均值为 、方差为 (有限)的任意一个总体中抽取样本量 为 n的样本,当 n充分大(通常是大于 36)时,样本均值文的抽样分布近似服从均值为 、 方差为 的正态分布。故即使总体是左偏分布,该样本均值仍服从正态分布,其均值为 12,标准差为 3/10 =0.3。3.设

17、总体 是来自总体 X的样本, 服从的分布是( )。(分数:1.00)A.t(15)B.t(16)C.X2(15)D.N(0,1) 解析:由题可知样本均值4.1000名学生参加某课程的考试,平均成绩是 82分,标准差是 8分,从学生中随机抽取 100个同学作为样本,则样本均值的数学期望和抽样分布的标准差分别为( )。(分数:1.00)A.82, 8B.82, 0.8 C.82, 64D.86,1解析:由中心极限定理得,在大样本条件下,样本均值 无的抽样分布近似服从均值为 方差为的正态分布。故该样本均值的数学期望为 82,标准差为 8/10 =0.8。5.某批产品的合格率为 90%,从中抽出 n=

18、 100的简单随机样本,以样本合格率 估计 总体合格率P,则 的期望值和标准差分别为( )。(分数:1.00)A.0.9, 0.09B.0.9, 0.03 C.0.9, 0.3D.0.09,0.3解析:在根据样本比例对总体比例进行推断时,设 P为样本比例, 为总体比例,则当 np5,n(1-p)5 时,在简单随机抽样重复抽样的情况下样本比例近似服从均值 , 方差为 (1 -)/n 的正态分布。则 P的期望值为 90%,标准差为 。6.若总体服从均值为 标准差为 的正态分布,从中抽出一个容量为 10的简单随机 样本,则样本平均的抽样分布为( )。(分数:1.00)A. B.C.D.解析:当总体分

19、布为正态分布 时,可得 的抽样分布仍为正态分布, 的数学期望为 ,方差为7.有一个样本容量为 10的样本,其均值为 1300小时,方差为 8175. 56。若按放回抽样 计算,则样本均值的标准误差是( )。(分数:1.00)A.28. 35 小时B.28. 59 小时 C.29. 61 小时D.30. 02 小时解析:简单随机抽样、重复抽样时,样本均值的标准误计算公式为:8.下面对矩估计法中原点矩和中心矩表述正确的是( )。(分数:1.00)A.样本的一阶原点矩就是样本的原数据值B.样本的一阶原点矩就是样本的均值 C.样本的二阶原点矩就是样本的均值D.样本的二阶中心矩就是样本的标准差解析:9.

20、用简单随机重复抽样方法选择样本单位,如果要使抽样平均误差降低 50%,则抽样 单位数需要增加到原单位数的( )。(分数:1.00)A.2倍B.3倍C.4倍 D.1倍解析:在简单随机抽样时,重复抽样条件下样本均值 i的抽样平均误差计算公式为 ,所以要使抽样平均误差降低 50%,则抽样单位数需要增加到原单位数的 4倍。10.样本统计量是( )。(分数:1.00)A.确定的B.唯一的C.随机变量 D.确定变量解析:样本统计量是由样本构造的一个函数,它不依赖于任何未知参数,由于样本具 有随机性,因此,样本统计量也是随机变量。11.设总体 X-X2(n),X1,X 2,.,X n是样本, ?是样本均值,

21、则( )。(分数:1.00)A. B.C.D.解析:总体 X-X2(n),则总体的均值和方差分别为:=n,12.设 X1,X 2,X 3,X 3是取自总体 X-N 的样本,则 Y=(X 3-X4)/ 服从( )分布。(分数:1.00)A.t(2) B.t(3)C.F(2,2)D.N(0,1)解析:13.某地区居民收入的方差为 900,随机抽取 400户调查,则调查户平均收人的方差为( ).(分数:1.00)A.30B.900C.300D.2.25 解析:根据中心极限定理,样本均值的方差为已知 =900,n400,所以平均收入的方差为 2.25。14. 假定 10亿人口大国和 100万人口小国的

22、居民年龄变异程度相同,现在各自用重复抽样方法抽取本国的 1%人口,则抽样误差( )。(分数:1.00)A.两者相等B.前者大于后者C.前者小于后者 D.不能确定解析:10 亿人口大国和 100万人口小国的居民年龄变异程度相同,说明两个总体的标 准差相同。这时,样本容量 n越大,抽样误差越小。因此,当各自用重复抽样方法抽取本国 相同比例的人口时,大国的抽样误差小于小国的,即前者小于后者。15.设随机变量 X-t(n),其中,n1,令 ,则( )。(分数:1.00)A.B.C.D. 解析:16.当抽样单位数增加 3倍时,随机重复抽样平均误差比原来( )。(分数:1.00)A.减少 1/2 B.增加

23、 1/2C.减少 1/3D.增加 1/3解析:在重复抽样条件下,样本均值的标准差(抽样平均误差)为总体标准差的 ,即 。当抽样单位数增加 3倍时,即 ,则17.重复抽样与不重复抽样相比,其样本均值抽样分布的标准差( )。(分数:1.00)A.重复抽样大 B.不重复抽样大C.一样大D.不一定解析:在不重复抽样中,样本均值抽样分布的标准差为重复抽样下的样 本均值抽样分布的标准差为;重复抽样下的样本均值分布的标准差为 所以重复抽样条件下的标准差要大。18.从均值为 ,方差为 根据中心极限定理可知,当样本 容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值和方差分别为( )。(分数:1.00)

24、A.B.C.D. 解析:19.从一个均值 =20,标准差 的总体中随机选取容量为 n=36的样本。假定该总体并不是很偏,则样本均值 小于 19. 8的近似概率为( )。(分数:1.00)A.0.1268B.0.1587 C.0.2735D.0.6324解析:由于 n=3630,根据中心极限定理有20.假设总体服从泊松分布,从此总体中抽取容量为 100的样本,则样本均值的抽样分布( )。(分数:1.00)A.服从泊松分布B.服从 X2分布C.抽样分布无法得到D.近似服从正态分布 解析:根据中心极限定理,不管总体分布是什么,当样本容量 n比较大(n 30)时,样 本均值的抽样分布近似服从正态分布。

25、21.从服从正态分布的无限总体中分别抽取容量为 7, 20, 80的样本,当样本容量增大,样本均值的数学期望_ ,标准差_ 。( )(分数:1.00)A.保持不变;增加B.保持不变;减小 C.增加;保持不变D.减小;保持不变解析:由于总体服从正态分布,所以样本均值的抽样分布仍为正态分布,数学期望不变;方差 为标准差为 ,故当样本容量 n增大时,标准差减小。 22.某厂家生产的灯泡寿命的均值为 1000小时,标准差为 4小时。如果从中随机抽取 16只灯泡进行检测,则样本均值( )。(分数:1.00)A.抽样分布的标准差为 1小时 B.抽样分布近似等同于总体分布C.抽样分布的中位数为 1000小时

26、D.抽样分布服从正态分布,均值为 1000小时解析:由于 n =16 30,并且总体的分布未知,所以抽样分布的形状未知。但是抽样分布的均值仍为 1000小时,标准差为 (小时)。23.假设总体比例为 0.2,从此总体中抽取容量为 100的样本,则样本比例的标准差为( )。(分数:1.00)A.0.2B.0.02C.0.04 D.0.16解析:由二项分布的原理和渐进分布的理论可知,设总体比例为 ,当 n充分大(n=10030)时样本比例的标准差为24.大样本的样本比例的抽样分布服从( )。(分数:1.00)A.正态分布 B.t分布C.F分布D.X2分布解析:由二项分布的原理和渐进分布的理论可知,

27、总体比例为 ,当 n充分大(大样本)时,样本比例的抽样分布服从均值为 ,方差为25. 设总体均值为 100,总体方差为 25,在大样本情况下,样本平均数的分布都是服从或近似服从( )。(分数:1.00)A.N(100)B.N(100,C.D. 解析:根据中心极限定理可知,在大样本情况下,样本平均数 的抽样分布近似服从平均值为 和样本方差为 的正态分布。由题知,26.随机变量 X和 Y相互独立且都服从正态分布 ?随机变量 X和 Y相互独立且都服从正态分布,则统计量 服从_分布,其参数为_。( )(分数:1.00)A.t;8B.t;9C.正态分布;(0,1)D.X2分布;9解析:因为 X服从正态分

28、布27.设 X1,X 2,.,X 5为来自总体 XN(0,1)的简单随机样本,为使统计量 (分数:1.00)A.2/3B.3/2C.D. 解析:二、多项选择题(总题数:4,分数:8.00)28.下列关于抽样平均误差、总体变异程度及样本容量之间关系的陈述,正确的有( )。(分数:2.00)A.总体变异程度一定时,样本容量愈大,抽样平均误差愈大B.总体变异程度一定时,样本容量愈大,抽样平均误差愈小 C.样本容量一定时,总体变异程度愈大,抽样平均误差愈大 D.样本容量一定时,总体变异程度愈大,抽样平均误差愈小E.样本容量一定时,总体变异程度不影响抽样平均误差的大小解析:抽样平均误差为 则当总体变异程

29、度 定时,样本容量 n越大,抽样平均误差越小;当样本容量 n定时,总体变异程度 越大,则抽样平均误差越大。29.以下关 X2分布的描述中,哪些是正确的?( )(分数:2.00)A.其变量值始终为正 B.属于左偏分布C.随着自由度的增大趋于对称 D.具有可加性 E.可用于单因素方差分析解析:由 X2分布的概率密度曲线可知,X 2分布是在(0,+ )上的右偏分布;且当自由度增加到足够大时,X 2分布的概率密度曲线趋于对称。由 X2分布的定义可知, X2分布具 有可加性。E 项,单因素方差分析研究的是一个分类型自变量对一个数值型因变量的影响, 检验的统计量为 F分布。30.下列关于统计量的表述中,正

30、确的有( )。(分数:2.00)A.统计量是样本的函数 B.估计同一总体参数可以用多个不同统计量 C.统计量是随机变量 D.统计量不能含有任何总体参数E.统计量不能含有总体未知的参数 解析:统计量是用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的 一个量,是样本的函数;由于抽样的随机性它又是一个随机变量,且不依赖于任何未知参 数。在估计总体参数时可以采用不同的估计方法,从而得到多个不同的样本统计量作为总体 参数估计量。31.下列属于次序统计量的有( )。(分数:2.00)A.中位数 B.均值C.四分位数 D.极差 E.样本方差解析:设 X1,X 2,,X n总是从总体 Z中抽取的一

31、个样本,X( i)称为第 i个次序统计量, 它是样本(X1,X 2,,X n) 满足如下条件的函数:每当样本得到一组观测值 x1,x2,.,xn时,其由小到大的排序中,第 i个值 x(i)作为 X(i)的观测值,而 X 1,X 2,,X n就称为次序统计量。中位数、分位数、极差 都是与 Xi的大 小次序相关的统计量,属于次序统计量;而均值、方差与 Xi的大小次序无关,不是次序统 计量。三、判断题(总题数:5,分数:10.00)32.设总体 。( )(分数:2.00)A.正确B.错误 解析:若总体33.t分布与正态分布的区别是前者的分布形态是不对称的,后者是对称的。( )(分数:2.00)A.正

32、确B.错误 解析:t分布和正态分布都是对称分布,在样本容量 n较小时,两者分布区别较大,当 n足够大时,t 分布近似于正态分布。34.样本均值的标准差也称抽样估计的标准误差,可用公式表示为 .( )(分数:2.00)A.正确B.错误 解析:样本均值的标准差也称抽样估计的标准误差,可用公式表示为35.样本均值的抽样分布形式仅与样本量 n的大小有关。( )(分数:2.00)A.正确B.错误 解析:当所抽取的样本为小样本时,样本均值的抽样分布不仅与样本量 n有关,还与总体的分布形式有关;当为大样本时,由中心极限定理可知,样本均值的抽样分布近似服从 正态分布。36.分别来自两个总体的两个样本,当样本容

33、量足够大时,样本均值之差的抽样分布服 从正态分布。( )(分数:2.00)A.正确 B.错误解析:由中心极限定理可知,对于来自任意总体的样本,当样本容量足够大时,样本 均值的抽样分布近似服从正态分布;而又由正态变量的线性变换不变性可知,此时样本均值 之差的抽样分布也服从正态分布。四、简答题(总题数:7,分数:35.00)37.简述中心极限定理及意义。(分数:5.00)_正确答案:((1)中心极限定理从任意一个均值为 、方差为 的总体中随机抽取一个样本容量为 n的样本,当样本 量 n足够大时,样本均值 近似服从均值为 、方差为 的正态分布。(2)中心极限定理的意义中心极限定理为数理统计在统计学中

34、的应用铺平了道路。用样本推断总体的关键在于掌 握样本特征值的抽样分布,而中心极限定理表明:只要样本容量足够地大,那么未知总体的 样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据, 几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟 了统计学的方法领域,其在现代推断统计学方法论中居于主导地位。)解析:38.简述样本均值和总体分布之间的关系,样本均值分布在统计推断中的具体应用。(分数:5.00)_正确答案:((1)样本均值和总体分布之间的关系 如果总体是正态分布,无论样本容量的大小,样本均值也服从正态分布。其分布的数 学期望为总体均值,方

35、差为总体方差的 1/n 根据中心极限定理,在样本容量足够大的情况下,不管总体分布是什么,样本均值都 会近似地服从正态分布; 样本均值的期望和方差受总体分布的影响。一个期望为 ,方差为 的样本,从其 中抽取一个容量为 n的样本,则样本均值的期望为 ,方差为 。(2)样本均值分布在统计推断中的具体应用在统计推断中,样本均值的分布一定程度上是由总体分布决定的。因此,样本均值的分 布有如下的应用: 利用样本均值的分布可推测总体的分布; 利用样本均值的分布可以构建总体均值的置信区间; 利用样本均值的分布可以对总体的参数进行假设检验。)解析:39.何谓统计量?X 2分布、t 分布、F 分布是不是统计量?它

36、们在统计分析中各有何用处?(分数:5.00)_正确答案:(设 X1,X2,X n总是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造 一个函数T(X1,X2,X n),不依赖于任何未知参数,则称函数 T(X1,X2,X n)是一 个统计量。通常,又称T(X1,X2,X n)为样本统计量。当获得样本的一组具体观测值 x1,x2,.,xn时,代入 T,计算出T(x1,x2,.,xn)的数值,就获得一个具体的统计量值。在总体 X的分布类型已知时,若对任一样本容量 n,都能导出统计量 T=T(X1,X2,X n)的分布的数学表达式,这种分布称为精确的抽样分布。在正态总体条件下,主要有 X 2分

37、布、t 分布、F 分布,常称之为统计三大分布。即 X2分布,t 分布、F 分布是由样本构 造的函数(也就是统计量)服从的分布,这些分布与样本无关,它们与统计量有本质的区别, 所以说 X2分布、t 分布、F 分布都不是统计量。X2分布:X 2分布可以用来构造 t分布与 F分布,可以用来构造非参数检验中 X2拟合优 度检验的检验统计量,该检验统计量常用于列联分析。t分布:一般当 n30 时,t 分布与标准正态分布就非常接近。t 分布的诞生对于统计学 中小样本理论和应用有着重要的促进作用。例如在单样本、两个样本的均值假设检验与线性 回归方程中回归系数的显著性检验中,常用 t分布来构造检验统计量。F分

38、布:在比较两个总体方差的假设检验时通常用 F统计量,且 F分布常被用来构造检 验统计量以应用于线性回归方程的整体显著性检验与方差分析中。)解析:40.什么是抽样平均误差?影响抽样平均误差的因素有哪些?(分数:5.00)_正确答案:(抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样 成数)与总体平均数(或总体成数)的平均误差程度。影响抽样平均误差的因素有四个:(1) 样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越小;抽样数 目越少,抽样误差越大。当 n=N时,就是全面调查,抽样误差此时为零。(2) 总体标志变异程度。其他条件不变的情况下,总体标志变异程度

39、越大,抽样误差越 大;总体标志变异程度越小,抽样误差越小。(3) 抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当 n相对 N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。(4) 抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽 样的抽样误差较小,而整群抽样的抽样误差较大。)解析:41.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?(分数:5.00)_正确答案:((1)设 X1,X 2,X n总是从总体 Z中抽取的容量为 n的一个样本,如果由此样本 构造一个函数T(X1,X 2,X n),不依赖于任何未知参数,则称函数 T

40、(X1,X 2,X n) 是一个统计量。(2) 在实际应用中,当从某总体中抽取一个样本后,并不能直接用它去对总体的有关性 质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍 较分散。为了使统计推断成为可能,首先必须把我们所关心的分散在样本中的信息集中起 来,针对不同的研究目的,构造不同的样本函数。(3) 统计量是样本的一个函数。由样本构造具体的统计量,实际上是对样本所含的总体 信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。)解析:42.什么是 X2分布?请简述 X2分布的特点

41、。(分数:5.00)_正确答案:((1)设随机变量 X1,X 2,X n相互独立,且 Xi (i= 1,2,,n)服从标准正态 分布(0, 1),则它们的平方和 服从自由度为 n的 X2分布。(2)X2分布的特点: X 2分布是一个以自由度为参数的分布族,自由度决定了分布的形状; X 2分布是一种非对称分布,当自由度 n达到相当大时,X 2分布就接近于正态分布; X 2分布的变量值始终为正。)解析:43.重复抽样和不重复抽样相比,抽样均值分布的标准差有什么不同?(分数:5.00)_正确答案:(样本均值的方差与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的 1/n,即 ,在不重复抽样

42、条件下,样本均值的方差则需要用修正系数 去修正重复抽样时样本均值的方差,即 。对于无限总体进行不重复抽样时,可以按重复抽样来处理,因为其修正系数 趋向 于 1;对于有限总体,当 N很大而 n很小时,其修正系数 也趋向于 1,这时样本均值的 方差也可以按公式 来计算。)解析:五、计算题(总题数:6,分数:40.00)44.从正态总体 N(3.4,6 2)中抽取容量为 n的样本,如果要求其样本均值位于区间 (1.4, 5.4)内的概率不小于 0.95,问样本容量 n至少应取多大?附表:标准正态分布表(分数:5.00)_正确答案:()解析:45.某保险公司为 50个集体投保人提供医疗保险,假设他们医疗花费相互独立,且花费(单位为百元)服从相同的分布律 当花费超过百元时,保险公司应

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1