1、统计学考研真题精选 3 及答案解析(总分:100.00,做题时间:150 分钟)一、单项选择题(总题数:26,分数:26.00)1.下面哪个图形保留了原始数据的信息?( )(分数:1.00)A.直方图B.茎叶图C.条形图D.箱线图2.下列哪种分类结果属于非顺序数据?( )产品质量按等级分类(分数:1.00)A.产品质量按等级分类B.人口按男女性别分类C.考核结果按优秀、良好、合格、不合格分类D.学历按小学、初中、高中、大专、本科、硕士及以上分类3.用于显示时间序列数值型数据,以反映事物发展变化的规律和趋势的图是( )。(分数:1.00)A.直方图B.箱线图C.茎叶图D.线图4.雷达图的主要用途
2、是( )。(分数:1.00)A.反映一个样本或总体的结构B.比较多个总体的构成C.反映一组数据的分布D.比较多个样本的相似性5.根据某地 6 至 16 岁学生近视情况的调查资料,反映患者的年龄分布可用( )。(分数:1.00)A.线图B.散点图C.直方图D.条形图6.美国汽车制造商协会想了解消费者购车时的颜色偏好趋势,抽取新近售出的 40 辆车并记录其颜色种类(黑、白、红、绿、棕)和深浅类型(亮色、偏淡、中等、偏浓);你认为以下展示数据的图表中,哪一种不适合用来处理这一样本数据?( )(分数:1.00)A.散点图B.饼图C.条形图D.频数图7.名研究人员希望通过图形来说明 4 月份以来北京地区
3、二手房租金每天的变化,如下哪个图形最合适?( )(分数:1.00)A.直方图B.散点图C.折线图D.茎叶图8.对于 100 名学生某一门课程的成绩,若想得到四分之一分位数、中位数与四分之三分位数,以下哪种描述统计的办法更有效?( )(分数:1.00)A.直方图B.茎叶图C.饼图D.点图9.某外商投资企业按工资水平分为四组:1000 元以下,1000 1500 元;1500 -2000 元;2000 元以上。第一组和第四组的组中值分别为( )。(分数:1.00)A.750 和 2500B.800 和 2250C.800 和 2500D.750 和 225010.统计分组的核心问题是( )。(分数
4、:1.00)A.选择分组方法B.确定组数C.选择分组标志D.确定组中值11.组上限是指( )。(分数:1.00)A.每个组的最小值B.每个组的最大值C.每个组的中点数值D.每个组的起点数值12.下列各项中,适合于比较研究两个或多个样本或总体的结构性问题的是( )。(分数:1.00)A.环形图B.饼图C.直方图D.茎叶图13.饼图的主要用途是( )。(分数:1.00)A.反映一个样本或总体的结构B.比较多个总体的构成C.反映一组数据的分布D.比较多个样本的相似性14.在连续变量或变量值较多的情况下,通常采用的分组方法是( )。(分数:1.00)A.单变量值分组B.组距分组C.等距分组D.连续分组
5、15.在坐标系中,矩形的宽度表示直方图的( )。(分数:1.00)A.频数B.组中值C.组距D.组限16.各组的组中值代表组变量值的( )。(分数:1.00)A.般水平B.最高水平C.最低水平D.随机水平17. 某同学统计学考试成绩为 80 分,应将其计入( )。(分数:1.00)A.成绩为 80 分以下的人数中B.成绩为 70?80 分的人数中C.成绩为 80?90 分的人数中D.根据具体情况来具体确定18.组距、组限和组中值之间的关系是( )。(分数:1.00)A.组距=(上限-下限)+2B.组中值=(上限+下限)+2C.组中值=(上限-下限)+2D.组限=组中值+219. 为描述身高与体
6、重之间是否有某种关系,适合采用的图形是( )。(分数:1.00)A.雷达图B.气泡图C.散点图D.箱线图20.为了研究多个不同变量在不同样本间的相似性,适合采用的图形是( )。(分数:1.00)A.环形图B.茎叶图C.雷达图D.箱线图21.5 家公司的月销售额(万元)数据分别为:29, 26, 25, 23, 23。下列哪种图形不宜用于描述这些数据?( )(分数:1.00)A.茎叶图B.散点图C.条形图D.饼图22.下列图形中,适合描述顺序数据的是( )。(分数:1.00)A.直方图B.茎叶图C.环形图D.箱线图23.与直方图相比,茎叶图( )。(分数:1.00)A.没保留原始数据的信息B.更
7、适合描述分类数据C.不能有效展示数据的分布D.保留了原始数据的信息24.某连续变量的分组中,其末组为开口组,下限为 200,又知其邻组的组中值为 170,则末组组中值为( )。(分数:1.00)A.185B.215C.230D.26025.将某企业职工的月收入依次分为 2000 元以下、2000 元 3000 元、3000 元 4000 元、4000 元5000 元、5000 元以上几个组。第一组的组中值近似为( )。(分数:1.00)A.1000B.1500C.2000D.250026.统计表的行标题表示各组的名称,一般应写在统计表的( )。(分数:1.00)A.上方B.左方C.右方D.均可
8、以二、多项选择题(总题数:7,分数:14.00)27.下列哪些图形不适用于品质型数据的频数分布显示?( )(分数:2.00)A.条形图B.直方图C.茎叶图D.箱线图28.在组距数列中,组距大小与( )。(分数:2.00)A.全距的大小成正比B.全距的大小成反比C.只与全距大小有关D.组数多少成正比E.组数多少成反比29.在进行统计分析时,需要对获取的数据进行审核,请问以下哪些是需要审核的内容( )。(分数:2.00)A.数据的完整性B.数据的准确性C.数据的适用性D.数据的时效性E.数据的随机性30.从形式上看,统计表由( )组成。(分数:2.00)A.表头B.行标题C.列标题D.数字资料E.
9、宾词31.下列关于数据分组的说法,正确的有( )。(分数:2.00)A.数据分组的组数一般与数据本身的特点及数据的多少有关B.对于数据分组的组数并没有什么要求,可以任意分组C.一般情况下,一组数据所分的组数应不少于 5 组且不多于 15 组D.如果组数太少,数据的分布就会过于集中E.般情况下,一组数据所分的组数应大于 10 组32.张好的图形应具有的特征是( )。(分数:2.00)A.显示数据B.避免歪曲C.强调数据之间的比较D.应当是多维的E.有对图形的统计和文字说明33.对于分组数据的组中值的计算方法有( )。(分数:2.00)A.闭口组组中值=(上限+下限)/2B.开口组末组组中值=下限
10、+上限/2C.开口组首组组中值=上限-下限/2D.开口组首组组中值=上限-邻组组距/2E.开口组末组组中值=下限+邻组组距/2三、简答题(总题数:8,分数:45.00)34.统计中用以描述品质型数据频数分布的图形主要有哪些?各自有何特点?(分数:5.00)_35.简述直方图与茎叶图的区别。(分数:5.00)_36.欲调查广州市初中学生的身高情况,随机抽取 100 名广州市初中学生,测量了身高。(分数:10.00)(1) 用此例说明这几个统计概念,总体(population),样本(sample),参数(pamme-ter ),统计量(statistics)。(分数:5.00)_(2) 请说明如
11、何对这 100 例身高数据进行描述性统计分析。(分数:5.00)_37.在盒子图(箱线图)的作图中,会使用哪些描述指标。(分数:5.00)_38.何谓统计分组?统计分组有哪些作用?(分数:5.00)_39.简述统计分组的原则。(分数:5.00)_40.统计分组标志选择的原则。(分数:5.00)_41.说明条形图和直方图的区别和联系。(分数:5.00)_四、计算题(总题数:6,分数:15.00)42.某班学生统计学期末考试成绩数据如表 3 -1 所示。要求:(分数:4.00)(1) 绘制频数分布直方图;(分数:1.00)_(2) 填制累积频数分布表;(分数:1.00)_(3) 绘制累积频数分布图
12、;(分数:1.00)_(4) 计算均值、方差及标准差。(分数:1.00)_43.某位职员每天上班有两种方法:公共交通和自己开车。每种方法所需的时间记录的样本数据如表 3-5所示。时间以分钟为单位。(分数:2.00)(1) 哪种方法更好?试解释之。(分数:1.00)_(2) 画出每种方法的箱图。两个箱图的比较结果是否支持你的结论?(分数:1.00)_44.某家商场为了了解前来该商场购物的顾客的学历分布情况,随机抽取了 100 名顾客。其学历表示为:1:初中,2:高中或中专,3:大专,4:本科及以上。调查结果如表 3-6 所示。(分数:3)(1) 上表中的数据属于什么类型?(分数:1)_(2) 制
13、作一张频数分布表。(分数:1)_(3) 绘制一张条形图,反映顾客的学历分布。(分数:1)_45.抽样调查某地区 50 户居民的月消费品支出额数据资料,如表 3-13 所示(单位: 元)。要求:(分数:2)(1) 试根据上述资料编制频数分布表。(分数:1)_(2) 编制向上和向下累积频数、频率分布表。(分数:1)_46.已知一组 15 名工人的资料,如表 3-8 所示。要求:(分数:2.00)(1) 按照性别、文化程度和技术级别分别对数据进行分组。(分数:1)_(2) 以组距为 10 岁,20 岁以下、60 岁以上各为一组,编制频数分布表。(分数:1.00)_47.抽样调查某省 50 户城镇居民
14、平均每人全年可支配收入资料,如表 3-17 所示。要求:(分数:2)(1)试根据上述资料编制频数分布表;(分数:1)_(2)根据所编制的频数分布表绘制直方图。(分数:1)_统计学考研真题精选 3 答案解析(总分:100.00,做题时间:150 分钟)一、单项选择题(总题数:26,分数:26.00)1.下面哪个图形保留了原始数据的信息?( )(分数:1.00)A.直方图B.茎叶图 C.条形图D.箱线图解析:茎叶图是保留并反映原始数据分布的图形,它由茎和叶两部分构成,其图形是由数字组成的。ACD三项都需要对原始数据进行处理,求得一些测度值之后再作出图形。2.下列哪种分类结果属于非顺序数据?( )产
15、品质量按等级分类(分数:1.00)A.产品质量按等级分类B.人口按男女性别分类 C.考核结果按优秀、良好、合格、不合格分类D.学历按小学、初中、高中、大专、本科、硕士及以上分类解析:顺序数据是只能归于某一有序类别的非数字型数据,顺序数据虽然也是类别, 但这些类别是有序的。ACD 三项均属于顺序数据。B 项,人口按男女性别分类只能归于某一类别,但这些类别是无序的,故属于分类数据。3.用于显示时间序列数值型数据,以反映事物发展变化的规律和趋势的图是( )。(分数:1.00)A.直方图B.箱线图C.茎叶图D.线图 解析:如果数值型数据是在不同时间上取得的,即时间序列数据,则可以绘制线图。 线图主要用
16、于反映现象随时间变化的特征。4.雷达图的主要用途是( )。(分数:1.00)A.反映一个样本或总体的结构B.比较多个总体的构成C.反映一组数据的分布D.比较多个样本的相似性 解析:雷达图在显示或对比各变量的数值总和时十分有用。假定各变量的取值具有相同的正负号,则总的绝对值与图形所围成的区域成正比。此外,利用雷达图也可以研究多个样本之间的相似程度。5.根据某地 6 至 16 岁学生近视情况的调查资料,反映患者的年龄分布可用( )。(分数:1.00)A.线图B.散点图C.直方图 D.条形图解析:直方图是用来反映数据分布的直观形式,它的横坐标代表变量分组,纵坐标代表各变量值出现的频数。条形图是用来反
17、映分类数据的,反映数值型数据一般用直方图;散点图反映两个变量间的关系;线图主要用来反映现象随时间变化的特征。6.美国汽车制造商协会想了解消费者购车时的颜色偏好趋势,抽取新近售出的 40 辆车并记录其颜色种类(黑、白、红、绿、棕)和深浅类型(亮色、偏淡、中等、偏浓);你认为以下展示数据的图表中,哪一种不适合用来处理这一样本数据?( )(分数:1.00)A.散点图 B.饼图C.条形图D.频数图解析:散点图(scatter diagram)是用二维坐标展示两个变量之间关系的一种图形。它是用坐标横轴代表变量 x,纵轴代表变量 y,每组数据(x i,y i)在坐标系中用一个点表示,n 组数据在坐标系中形
18、成的 n 个点称为散点,由坐标及其散点形成的二维数据图称为散点图。它处理的是数值型数据。而 BCD 三项都可以用来处理分类数据和顺序数据。7.名研究人员希望通过图形来说明 4 月份以来北京地区二手房租金每天的变化,如下哪个图形最合适?( )(分数:1.00)A.直方图B.散点图C.折线图 D.茎叶图解析:直方图是用于展示分组数据分布的一种图形,它是用矩形的宽度和高度(即面积)来表示频数分布的;散点图是用二维坐标表示两个变量之间关系的一种图形;如果数值型数据是在不同时间上取得的,即时间序列数据,则可以绘制折线图,折线图主要用于反映现象随时间变化的特征。8.对于 100 名学生某一门课程的成绩,若
19、想得到四分之一分位数、中位数与四分之三分位数,以下哪种描述统计的办法更有效?( )(分数:1.00)A.直方图B.茎叶图 C.饼图D.点图解析:直方图、饼图描述的数值型数据是分组数据,而茎叶图描述的是未分组的数值型数据,点图描述的是两个变量之间的关系。茎叶图保留了原始数据的信息,可以计算其分位数。9.某外商投资企业按工资水平分为四组:1000 元以下,1000 1500 元;1500 -2000 元;2000 元以上。第一组和第四组的组中值分别为( )。(分数:1.00)A.750 和 2500B.800 和 2250C.800 和 2500D.750 和 2250 解析:根据开口组组距与相邻
20、组组距相同,即均是 500,以及第一组的上限是 1000,第四组的下限是 2000,可得: 第一组的组中值二 1000-500 +2 = 50第四组的组中值=2000 +500 +2 =225010.统计分组的核心问题是( )。(分数:1.00)A.选择分组方法B.确定组数C.选择分组标志 D.确定组中值解析:分组标志作为现象总体被划分为各个不同性质的组的标准或根据,选择的正确与否,关系到能否正确地反映总体的性质特征、实现统计研究的目的。11.组上限是指( )。(分数:1.00)A.每个组的最小值B.每个组的最大值 C.每个组的中点数值D.每个组的起点数值解析:组限是指数列中每个分组两端表示各
21、组界限的变量值。每组有两个组限:数值最小的为组的下限;数值最大的为组的上限。12.下列各项中,适合于比较研究两个或多个样本或总体的结构性问题的是( )。(分数:1.00)A.环形图 B.饼图C.直方图D.茎叶图解析:环形图可以同时绘制多个样本或总体的数据系列,每一个样本或总体的数据系列为一个环,样本中的每一部分数据用环中的一段表示。因此,环形图可显示多个样本或总体各部分所占的相应比例。13.饼图的主要用途是( )。(分数:1.00)A.反映一个样本或总体的结构 B.比较多个总体的构成C.反映一组数据的分布D.比较多个样本的相似性解析:饼图是用圆形及圆内扇形的角度来表示数值大小的图形。它主要用于
22、表示一个样本(或总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。14.在连续变量或变量值较多的情况下,通常采用的分组方法是( )。(分数:1.00)A.单变量值分组B.组距分组 C.等距分组D.连续分组解析:在连续变量或变量值较多的情况下,通常采用组距分组。它是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。在组距分组中,一个组的最小值称 为下限;一个组的最大值称为上限。15.在坐标系中,矩形的宽度表示直方图的( )。(分数:1.00)A.频数B.组中值C.组距 D.组限解析:直方图是用于展示分组数据分布的一种图形,它是用矩形的宽度和高度(即面积)来表示频
23、数分布的,宽度表示各组的组距。绘制该图时,在平面直角坐标系中,用横轴表示数据分组,纵轴表示频数或频率。这样,各组与相应的频数就形成了一个矩形,即直方图。16.各组的组中值代表组变量值的( )。(分数:1.00)A.般水平 B.最高水平C.最低水平D.随机水平解析:组中值是指组距数列每组下限与上限之间中点位置上的数值,近似地代替每组变量值的一般水平。17. 某同学统计学考试成绩为 80 分,应将其计入( )。(分数:1.00)A.成绩为 80 分以下的人数中B.成绩为 70?80 分的人数中C.成绩为 80?90 分的人数中 D.根据具体情况来具体确定解析:采用组距分组时,需要遵循不重不漏的原则
24、。不重是指一项数据只能分在其中的某一组,不能在其他组中重复出现。为解决不重的问题,统计分组时习惯上规定“上组限 不在内”,即当相邻两组的上下限重叠时,恰好等于某一组上限的变量值不算在本组内,而计算在下一组内。按照不重原则,该同学统计学考试成绩为 80 分应计入成绩为 80?90 分的人数中。18.组距、组限和组中值之间的关系是( )。(分数:1.00)A.组距=(上限-下限)+2B.组中值=(上限+下限)+2 C.组中值=(上限-下限)+2D.组限=组中值+2解析:组距是一个组的上限与下限的差,组距=上限-下限。它可根据全部数据的最大值和最小值及所分的组数来确定,即组距=(最大值-最小值)+组
25、数。而组中值是指组距数列每组下限与上限之间中点位置上的数值,故 B 项正确。19. 为描述身高与体重之间是否有某种关系,适合采用的图形是( )。(分数:1.00)A.雷达图B.气泡图C.散点图 D.箱线图解析:散点图是用二维坐标表示两个变量之间关系的一种图形。题中只有两个变量, 即身高和体重,因此可用散点图来描述。A 项是显示多个变量之间关系的常用图示方法;B 项是展示三个变量之间的关系的图示方法;D 项是由一组数据的最大值、最小值、中位数、 两个四分位数这五个特征值绘制而成的。20.为了研究多个不同变量在不同样本间的相似性,适合采用的图形是( )。(分数:1.00)A.环形图B.茎叶图C.雷
26、达图 D.箱线图解析:雷达图是显示多个变量的常用图示方法,也称为蜘蛛图。雷达图也可以研究多个样本之间的相似程度。21.5 家公司的月销售额(万元)数据分别为:29, 26, 25, 23, 23。下列哪种图形不宜用于描述这些数据?( )(分数:1.00)A.茎叶图B.散点图C.条形图D.饼图 解析:散点图是展示两个变量之间关系的一种图形,而本题中只有一个变量即月销售额数据。22.下列图形中,适合描述顺序数据的是( )。(分数:1.00)A.直方图B.茎叶图C.环形图 D.箱线图解析:顺序数据的图示方法有条形图、帕累托图、饼图、累积频数分布图和环形图等。 ABD 三项适合描述数值型数据。23.与
27、直方图相比,茎叶图( )。(分数:1.00)A.没保留原始数据的信息B.更适合描述分类数据C.不能有效展示数据的分布D.保留了原始数据的信息 解析:茎叶图类似于横置的直方图。与直方图相比,茎叶图既能给出数据的分布状况,又能给出每一个原始数值,即保留了原始数据的信息。而直方图虽然能很好地显示数据的分布,但不能保留原始数值。茎叶图适合描述未分组数据。24.某连续变量的分组中,其末组为开口组,下限为 200,又知其邻组的组中值为 170,则末组组中值为( )。(分数:1.00)A.185B.215C.230 D.260解析:缺上限的最大组的组中值=最大组的下限+相邻组的组距/2。由题可知,末组相邻组
28、的上限即为末组的下限值 200,相邻组的组距/2 = 200 -170 =30。所以,末组的组中值=200+30 =230。25.将某企业职工的月收入依次分为 2000 元以下、2000 元 3000 元、3000 元 4000 元、4000 元5000 元、5000 元以上几个组。第一组的组中值近似为( )。(分数:1.00)A.1000B.1500 C.2000D.2500解析:组中值是上限和下限之间的中点数值,它是代表各组标志值一般水平的数值。对于开口组的组距和组中值的确定,一般以其邻近组的组距为准。所以第一组的组中值=上限-邻组组距/2 =2000 - 1000/2 = 1500。26
29、.统计表的行标题表示各组的名称,一般应写在统计表的( )。(分数:1.00)A.上方B.左方 C.右方D.均可以解析:统计表一般由四个主要部分组成,即表头、行标题、列标题和数据资料。行标题和列标题通常安排在统计表的第一列和第一行,即统计表的左方和上方,分别表示的是所研究问题的类别名称和变量名称。二、多项选择题(总题数:7,分数:14.00)27.下列哪些图形不适用于品质型数据的频数分布显示?( )(分数:2.00)A.条形图B.直方图 C.茎叶图 D.箱线图 解析:品质型数据的图示方法包括条形图、帕累托图、饼图、环形图等,其中条形图用于显示数据的频数分布;数值型数据的图示方法包括直方图、茎叶图
30、、箱线图、线图、散点图、气泡图、雷达图等,其中直方图用于显示数据的频数分布。28.在组距数列中,组距大小与( )。(分数:2.00)A.全距的大小成正比 B.全距的大小成反比C.只与全距大小有关D.组数多少成正比E.组数多少成反比 解析:组距=(最大值-最小值)/组数=全距/组数,因此组距大小与全距的大小成正比,与组数多少成反比。29.在进行统计分析时,需要对获取的数据进行审核,请问以下哪些是需要审核的内容( )。(分数:2.00)A.数据的完整性 B.数据的准确性 C.数据的适用性 D.数据的时效性 E.数据的随机性解析:数据审核就是检查数据中是否有错误。对于通过调查取得的原始数据,主要从完
31、整性和准确性两个方面去审核。完整性审核主要是检查应调查的单位或个体是否有遗漏,所有的调查项目是否填写齐全等;准确性审核主要是检查数据是否有错误,是否存在异常值等。对于通过其他渠道取得的二手数据,应着重审核数据的适用性和时效性。30.从形式上看,统计表由( )组成。(分数:2.00)A.表头 B.行标题 C.列标题 D.数字资料 E.宾词解析:统计表一般由四个主要部分组成,即表头、行标题、列标题和数字资料。此外,必要时可以在统计表的下方加上表外附加。31.下列关于数据分组的说法,正确的有( )。(分数:2.00)A.数据分组的组数一般与数据本身的特点及数据的多少有关 B.对于数据分组的组数并没有
32、什么要求,可以任意分组C.一般情况下,一组数据所分的组数应不少于 5 组且不多于 15 组 D.如果组数太少,数据的分布就会过于集中 E.般情况下,一组数据所分的组数应大于 10 组解析:数据分组的主要目的是观察数据的分布特征,因此组数的多少应适中,一般根据数据本身的特点及数据的多少来确定。如果组数太少,数据的分布就会过于集中,组数太多,数据的分布就会过于分散,这些都不便于观察数据分布的特征和规律。一般情况下,一组数据所分的组数应不少于 5 组且不多于 15 组。32.张好的图形应具有的特征是( )。(分数:2.00)A.显示数据 B.避免歪曲 C.强调数据之间的比较 D.应当是多维的E.有对
33、图形的统计和文字说明 解析:一张好的图形应具有以下基本特征:显示数据;让读者把注意力集中在图 形的内容上,而不是制作图形的程序上;避免歪曲;强调数据之间的比较;服务于一个明确的目的;有对图形的统计描述和文字说明。33.对于分组数据的组中值的计算方法有( )。(分数:2.00)A.闭口组组中值=(上限+下限)/2 B.开口组末组组中值=下限+上限/2C.开口组首组组中值=上限-下限/2D.开口组首组组中值=上限-邻组组距/2 E.开口组末组组中值=下限+邻组组距/2 解析:组中值,各组的上限和下限之间的中点叫组中值。组中值的计算方法是:组中值=(上限+下限)/2开口组的组中值计算方式是:首组的组
34、中值=最小组的上限-相邻组的组距/2 末组的组中值=最大组的下限+相邻组的组距/2 组中值代表着各组内变量值的一般水平,是各组变量值的代表值。三、简答题(总题数:8,分数:45.00)34.统计中用以描述品质型数据频数分布的图形主要有哪些?各自有何特点?(分数:5.00)_正确答案:(品质型数据包括分类数据和顺序数据。描述分类数据频数分布的图形主要有条形图、帕累托图、饼图、环形图等;描述顺序数据频数分布的图形除了以上几种,还有累计频数分布图。条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。条形图可以横置或纵 置,纵置时也称为柱形图。此外,条形图有简单条形图、对比条形图等形式。帕累托图
35、是按各类别数据出现的频数多少排序后绘制的柱形图。通过对柱形图的排序,容易看出哪类数据出现得多,哪类数据出现得少。帕累托图在质量控制研究中有广泛应用。对于不同类型的缺陷、失效方式和其他感兴趣的类,可以用帕累托图观察各个 类的影响顺序。饼图是用圆形及圆内扇形的角度来表示数值大小的图形。它主要用于表示一个样本(或 总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。环形图相当于多个饼图的叠加,图中每个样本用一个环来表示,样本中的每一部分数据用环中的一段表示。因此环形图可显示多个样本各部分所占的相应比例,从而有利于对多个样本(或总体)构成的比较研究。对于顺序数据,还可以计算累积频数和
36、累积频率(百分比)。根据累积频数或累积频率,可以绘制累积频数分布或累积频率分布图。)解析:35.简述直方图与茎叶图的区别。(分数:5.00)_正确答案:(直方图与茎叶图的区别主要表现为:(1) 直方图是用于展示分组数据分布的一种图形,它是用矩形的宽度和高度(即面积)来表示频数分布的。茎叶图是反映原始数据分布的图形,它由茎和叶两部分构成,其图形是由数字组成的。(2) 茎叶图类似于横置的直方图,与直方图相比,茎叶图既能给出数据的分布状况,又能给出每一个原始数值,即保留了原始数据的信息;而直方图虽然能很好地显示数据的分布,但不能保留原始的数值。在应用方面,直方图通常适用于大批量数据,茎叶图通常适用于
37、小批量数据。)解析:36.欲调查广州市初中学生的身高情况,随机抽取 100 名广州市初中学生,测量了身高。(分数:10.00)(1) 用此例说明这几个统计概念,总体(population),样本(sample),参数(pamme-ter ),统计量(statistics)。(分数:5.00)_正确答案:(总体(population)是包含所研究的全部个体(数据)的集合,它通常由所研究的 一些个体组成。本例中的总体是广州市所有初中学生。样本(sample)是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量 (sample size)。本例中的样本是随机抽取的 100 名广州市初中学
38、生。参数(parameter)是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体 的某种特征值。本例中广州市所有初中学生的平均身高即是一个参数。统计量(statistic)是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来 的一个量,由于抽样是随机的,因此统计量是样本的函数。随机抽取的 100 名广州市初中学生的平均身高即是一个统计量。)解析:(2) 请说明如何对这 100 例身高数据进行描述性统计分析。(分数:5.00)_正确答案:(数据的描述性统计方法通常包括三种:统计图、统计表以及数值方法。因为此例中的数据为数值型数据,故可以用直方图、茎叶图、箱线图、频数分布表等对这
39、 100 例身高数 据进行描述性统计分析,还可以计算出该组数据的平均值、中位数和方差、全距等来分别反映其集中趋势和离散程度。)解析:37.在盒子图(箱线图)的作图中,会使用哪些描述指标。(分数:5.00)_正确答案:(箱线图是由一组数据的最大值、最小值、中位数、两个四分位数这五个特征值绘制 而成的,它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。箱线图的绘制方法是:先找出一组数据的最大值、最小值、中位数和两个四分位数,然后,连接两个四分位数画出箱子;再将最大值和最小值与箱子相连接,中位数在箱子中间。由上面叙述可知,箱线图使用的描述指标有:最大值、最小值、中位数、两个四分位数
40、。)解析:38.何谓统计分组?统计分组有哪些作用?(分数:5.00)_正确答案:(根据统计研究的目的和客观现象的内在特点,按某个标志(或几个标志)把被研究的总体划分为若干个不同性质的组,称为统计分组。统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象 划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。)解析:39.简述统计分组的原则。(分数:5.00)_正确答案:(科学的统计分组应遵循两个原则:(1) 必须符合“穷尽原则”,即总体中的每一个单位都有有组可归,或者说各分组的空间足以容纳总体的所有单位;(2) 必须遵守“互斥原则”,即总体中任一单位只能归属于一组,而不能同时可能归属于几个组。例如:在对数值型数据进行采用组距分组时,需要遵循不重不漏的原则。不重是指一项 数据只能分在其中的某一组,不能