2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc

上传人:rimleave225 文档编号:322456 上传时间:2019-07-10 格式:DOC 页数:20 大小:752.43KB
下载 相关 举报
2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc_第1页
第1页 / 共20页
2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc_第2页
第2页 / 共20页
2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc_第3页
第3页 / 共20页
2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc_第4页
第4页 / 共20页
2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析).doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2014届河北唐山市高三年级第一学期期末考试理科数学试卷与答案(带解析) 选择题 设全集 ,已知集合 , ,则( ) A B C D 答案: B 试题分析: , , . 考点: 1.一元二次不等式的解法; 2.集合的交集运算 . 是以原点 为中心,焦点在 轴上的等轴双曲线在第一象限部分,曲线在点 P处的切线分别交该双曲线的两条渐近线于 两点,则( ) A B C D 答案: D 试题分析:设过点 的切线为 , ,消 得:, 即 , , , , , , , , , 为 中点, , . 考点: 1.直线与双曲线的位置关系; 2.根与系数关系 . 椭圆 的左、右焦点分别为 , 是 上两点, ,则椭圆

2、 的离心率为( ) A B C D 答案: D 试题分析:由条件 ,设 ,则 ,在 中有, 整理有 : ,即 ,即 ,在 中有 , 将 代入得: ,即 ,即 ,即 . 考点: 1.椭圆的标准方程与性质; 2.勾股定理 . 的零点个数为( ) A 4 B 5 C 6 D 7 答案: B 试题分析: , ,图像如图所示,由图像看出与 有 5个交点, 的零点个数为 5个 . 考点: 1.函数零点问题; 2.函数图像 . 如图, 和 都是圆内接正三角形,且 ,将一颗豆子随机地扔到该圆内,用 A表示事件 “豆子落在 内 ”, B表示事件 “豆子落在内 ”,则 ( ) A B C D 答案: D 试题分析

3、:如图作三条辅助线,根据已知条件得这些小三角形都全等,所以. 考点:条件概率 . 如图,直三棱柱 的六个顶点都在半径为 1的半球面上,侧面 是半球底面圆的内接正方形,则侧面 的面积为( ) A 2 B 1 C D答案: C 试题分析:球心在面 的中心 上, 为截面圆的直径, ,底面外接圆圆心 位于 中点, 外心 在 中点上,设正方形边长为 , 中, , , , ,即 ,则 , . 考点: 1.中位线; 2.勾股定理 . 某几何体的三视图如图所示,则该几何体的体积为( ) A B C D 答案: B 试题分析:由三视图可知:几何体是底面是半径为 2的半径扣掉一个三角形,. 考点: 1.三视图;

4、2.柱体体积 . 在公比大于 1的等比数列 中, , ,则 ( ) A 96 B 64 C 72 D 48 答案: A 试题分析: , , 或 ,又 公比大于 1, , 即 , . 考点: 1.等比数列的性质; 2.等比数列的通项公式 . 执行下边的程序框图,则输出的 n是( ) A 4 B 5 C 6 D 7 答案: C 试题分析:第一次循环: 第二次循环: 第三次循环: 第四次循环: 第五次循环: 第六次循环: 输出 . 考点:程序框图 . 是 上的奇函数,当 时, ,则当 时,( ) A B C D 答案: C 试题分析: , , ,又 是 上的奇函数, , . 考点: 1.函数的奇偶性

5、; 2.函数式 . 设 满足约束条件 ,则目标函数 的最大值是( ) A 3 B 4 C 5 D 6 答案: D 试题分析:由约束条件可得区域图像如图所示:则目标函数 在点取得最大值 6. 考点:线性规划 . 设复数 ,则 ( ) A B C D 答案: B 试题分析: , . 考点: 1.复数的除法计算; 2.共轭复数 . 填空题 数列 的前 n项和为 ,且 , ,则该数列的通项公式为 . 答案: 试题分析: , ,相减得:, 即 , , 数列 是以 1为首项, 为公比的等差数列, , . 考点: 1.求数列的通项公式; 2.等差数列的通项公式 . 已知 ,函数 在区间 单调递减,则 的最大

6、值为 . 答案: -12 试题分析: , , 函数 在区间 单调递减, ,即 ,即 , 的最大值为 -12. 考点:利用导数研究函数的单调性 . 在 的展开式中, 项的系数为 . 答案: 试题分析: , , , 项的系数为 . 考点:二项式定理 . 一支游泳队有男运动员 32人,女运动员 24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为 14的样本,则抽取男运动员的人数为 . 答案: 试题分析:由题意得: , ,所以抽取男运动员 8人 . 考点:分层抽样问题 . 解答题 已知圆 ,直线 ,以 O 为极点, x轴的正半轴为极轴,取相同的单位长度建立极坐标系 . ( 1)将圆 C和直线

7、 方程化为极坐标方程; ( 2) P是 上的点,射线 OP交圆 C于点 R,又点 Q在 OP上且满足,当点 P在 上移动时,求点 Q轨迹的极坐标方程 . 答案:( 1) , ;( 2) 试题分析:本题主要考查直角坐标系与极坐标之间的互化,考查学生的转化能力和计算能力 .第一问,利用直角坐标方程与极坐标方程的互化公式 ,进行转化;第二问,先设出 的极坐标,代入到中,化简表达式,又可以由已知得 和 的值,代入上式中,可得到 的关系式即点 轨迹的极坐标方程 . 试题:( )将 , 分别代入圆 和直线 的直角坐标方程得其极坐标方程为 , 4分 ( )设 的极坐标分别为 , , ,则 由 得 6分 又

8、, , 所以 , 故点 轨迹的极坐标方程为 10分 考点: 1.直角坐标方程与极坐标方程的互化; 2.点的轨迹问题 . 如图, 内接于 上, , 交 于点 E,点 F在 DA的延长线上, ,求证: ( 1) 是 的切线; ( 2) . 答案:( 1)证明过程详见;( 2)证明过程详见 . 试题分析:本题主要以圆为几何背景考查线线垂直、相等的证明,考查学生的转化与化归能力 .第一问,要证明 是 的切线,需要证明 或,由于 ,所以 与 相等,而 与 相等,而 与 相等,又因为 ,所以通过角的代换得也就是 为 ;第二问,先利用切割线定理列出等式,再通过边的等量关系转换边,得到求证的表达式 . 试题:

9、( )连结 因为 ,所以 是 的直径 因为 ,所以 又因为 ,所以 4分 又因为 , , 所以 ,即 , 所以 是 的切线 7分 ( )由切割线定理,得 因为 , , 所以 考点: 1.同弦所对圆周角相等; 2.切割线定理 . 已知函数 . ( 1)证明: ; ( 2)当 时, ,求 的取值范围 . 答案:( 1)证明过程详见;( 2) . 试题分析:本题考查导数的运算以及利用导数研究函数的单调性、最值等基础知识,考查综合分析问题解决问题的能力、转化能力和计算能力 .第一问,因为,所求证 ,所以只需分母 即可,设函数 ,对 求导,判断函数的单调性,求出最小值,证明最小值大于 0即可,所求证的不

10、等式的右边,需证明函数 的最大值为 1即可,对 求导,判断单调性求最大值;第二问,结合第一问的结论 ,讨论 的正负,当时, ,而 与 矛盾,当 时,当时, 与 矛盾,当 时,分母 去分母, 等价于 ,设出新函数,需要讨论 的情况,判断在每种情况下, 是否大于 0,综合上述所有情况,写出符合题意的 的取值范围 . 试题:( )设 ,则 当 时, , 单调递减; 当 时, , 单调递增 所以 又 ,故 2分 当 时, , 单调递增; 当 时, , 单调递减 所以 综上,有 5分 ( )( 1)若 ,则 时, ,不等式不成立 6分 ( 2)若 ,则当 时, ,不等式不成立 7分 ( 3)若 ,则 等

11、价于 设 ,则 若 ,则当 , , 单调递增, 9分 若 ,则当 , , 单调递减, 于是,若 ,不等式 成立当且仅当 已知抛物线 ,直线 与 E交于 A、 B两点,且,其中 O为原点 . ( 1)求抛物线 E的方程; ( 2)点 C坐标为 ,记直线 CA、 CB的斜率分别为 ,证明:为定值 . 答案:( 1) ;( 2)证明过程详见 . 试题分析:本题考查抛物线的标准方程和几何性质、直线的方程、向量的数量积等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力、综合分析和解决问题的能力 .第一问,将直线与抛物线方程联立,消去参数 ,得到关于 的方程,得到两根之和两根之积,设出点 的坐

12、标,代入到中,化简表达式,再将上述两根之和两根之积代入得出 的值,从而得到抛物线的标准方程;第二问,先利用点 的坐标得出直线 的斜率,再根据抛物线方程转化参数 ,得到 和 的关系式,代入到所求证的式子中,将上一问中的两根之和两根之积代入,化简表达式得出常 数即可 . 试题:( )将 代入 ,得 2分 其中 设 , ,则 , 4分 由已知, , 所以抛物线 的方程 6分 ( )由( )知, , ,同理 , 10分 所以 12分 考点: 1.抛物线的标准方程; 2.韦达定理; 3.向量的数量积; 4.直线的斜率公式 . 据民生所望,相关部门对所属单位进行整治性核查,标准如下表: 规定初查累计权重分

13、数为 10分或 9分的不需要复查并给予奖励, 10分的奖励18万元; 9分的奖励 8万元;初查累计权重分数为 7分及其以下的停下运营并罚款 1万元;初查累计权重分数为 8分的要对不合格指标进行复查,最终累计权重得分等于初查合格部分与复查部分得分的和,最终累计权重分数为 10分方可继续运营,否则停业运营并罚款 1万元 . ( 1)求一家单位既没获奖励又没被罚款的概率; ( 2)求一家单位在这次整治性核查中所获金额 X(万元)的分布列和数学期望(奖励为正数,罚款为负数) . 答案:( 1) ;( 2)分布列详见, . 试题分析:本题主要考查离散型随机变量的分布列与数学期望等基础知识,考查综合分析问

14、题解决问题的能力,考查运用概率知识解决简单实际问题的能力,考查计算能力 .第 一问,分析题意:只有得 8分的情况既没有奖励又没有罚款,但是得 8分时需要复查不合格指标项,所以符合题意的情况有: 甲的 4个指标项合格,乙的 2个指标项不合格,并对乙的 2个指标项进行复查, 甲的 4个指标项有 3个合格, 1个不合格,乙的 2个指标项合格并对甲中不合格的 1个指标项进行复查;第二问,通过已知条件得出, 有 4种情况:当 时,表示既没有奖励又没有罚款的情况,也就是第一问的情况;当 时,表示累计权重分数为 9分,也就是甲的 4个指标项都合格,而乙中的 2个指标项只有 1个合格;当 时,表示累计权重分数

15、为 10分,也就是说甲 乙中的所以指标项都合格的情况;当 时,表示累计权重分数为 7分,也就是甲中的 4个指标项有 3个合格 1个不合格,乙中的 2个指标项 1个合格 1个不合格,利用分析的情况列出概率表达式,列出分布列,利用期望的计算公式求数学期望 . 试题:记 “初查阶段甲类的一个指标项合格 ”为事件 , “初查阶段乙类的一个指标项合格 ”为事件 , “复查阶段一个指标项合格 ”为事件 ,则 , ( )记 “一家单位既没获奖励又没被罚款 ”为事件 ,则 4分 ( ) 的可能取值为 -1, 0, 8, 18 , , , 的分布列为 X -1 0 8 18 P 10分 的数学期望 (万元) 1

16、2分 考点:离散型随机变量的分布列和数学期望 . 如图,在三棱锥 中, , , D为 AC的中点, . ( 1)求证:平面 平面 ; ( 2)求二面角 的余弦值 . 答案:( 1)证明过程详见;( 2) . 试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力 .第一问,根据已知条件,取 中点 ,连结 ,得出,再利用 ,根据线面垂直的判定证出 平面 ,从而得到 垂直平面 内的线 ,再利用 为中位线,得出 平面 ,最后利用面面垂直的判定证明平面 垂直平面 ;第二问,由第一问知两两互相垂直,所以建立空间直

17、角坐标系,得出点 ,以及坐标,利用已知先求出平面 与平面 的法向量,再利用夹角公式求出夹角的余弦值 . 试题:( )取 中点为 ,连结 , 因为 ,所以 又 , ,所以 平面 , 因为 平面 ,所以 3分 由已知, ,又 ,所以 , 因为 ,所以 平面 又 平面 ,所以平面 平面 5分 ( )由( )知, , , 两两互相垂直 以 为坐标原点, 的方向为 轴的方向, 为单位长,建立如图所示的空间直角坐标系 由题设知 , , , 则 , , 设 是平面 的法向量,则 即 ,可取 9分 同理可取平面 的法向量 故 11分 所以二面角 的余弦值为 12分 考点: 1.线面垂直的判 在锐角 中, 分别

18、为角 的对边,且 . ( 1)求角 A的大小; ( 2)若 BC边上高为 1,求 面积的最小值? 答案:( 1) ;( 2) . 试题分析:本题主要考查两角和与差的正弦公式、二倍角公式、诱导公式、三角函数最值等基础知识,考查运用三角公式进行三角变换的能力和计算能力 .第一问,利用三角形的内角和为 转化 ,用诱导公式、降幂公式、倍角公式化简表达式,得到关于 的方程,解出 的值,通过 的正负判断角 是锐角还是钝角;第二问,在 和 中, ,代入到三角形面积公式 中,要求面积的最值,只需求化简后的表达式中的分母的最值,将角 用角 表示,利用两角和与差的正弦公式化简,由于角 和角 都是锐角,所以得到角

19、的取值范围,代入到化简的表达式中,得到函数的最小值,从而三角形面积会有最大值 . 试题:( )因为 ,所以 , 所以由已知得 ,变形得 , 整理得 ,解得 因为 是三角形内角,所以 5分 ( ) 的面积 设 , 则 9分 因为 , ,所以 ,从而 , 故当 时, 的最小值为 考点: 1.诱导公式; 2.降幂公式; 3.倍角公式; 4.两角和与差的正弦公式; 5.三角函数的最值 . 已知 , . ( 1)求 的最小值; ( 2)证明: . 答案:( 1)最小值为 3;( 2)证明过程详见 . 试题分析:本题主要考查利用基本不等式进行不等式的证明问题,考查学生的分析问题的能力和转化能力 .第一问,用基本不等式分别对 和进行计算,利用不等式的可乘性,将两个式子乘在一起,得到所求的表达式的范围,注意等号成立的条件必须一致;第二问,先用基本不等式将 , 变形,再把它们加在一起,得出已知中出现的 ,从而求出最小值,而所求证的式子的右边,须作差比较大小,只需证出差值小于 0即可 . 试题:( )因为 , , 所以 ,即 , 当且仅当 时, 取最小值 3 5分 ( ) 又 , 所以 考点: 1.基本 不等式; 2.不等式的性质; 3.作差比较大小 .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1