1、 1 2018 年人教版高中数学知识点总结 高中数学 必修 1 知识点 第一章 集合与函数概念 【 1.1.1】集合的含义与表示 ( 1)集合的概念 集合中的元素具有确定性、互异性和无序性 . ( 2)常用数集及其记法 N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集 . ( 3)集合与元素间的关系 对象 a 与集合 M 的关系是 aM ,或者 aM ,两者必居其一 . ( 4)集合的表示法 自然语言法:用文字叙述的形式来描述集合 . 列举法:把集合中的元素一一列举出来,写在大括号内表示集合 . 描述法: x |x 具有的性质 ,其中 x 为
2、集合的代表元素 . 图示法:用数轴或韦恩图来表示集合 . ( 5)集合的分类 含有有限个元素的集合叫做有限集 .含有无限个元素的集合叫做无限集 .不含有任何元素的集合叫做空集 ( ). 【 1.1.2】集合间的基本关系 ( 6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 子集 BA (或)AB A 中的任一元素都属于 B (1)A A (2) A (3)若 BA 且 BC ,则 AC (4)若 BA 且 BA ,则 AB A(B)或B A真子集 AB (或 BA) BA ,且 B中至少有一元素不属于A ( 1) A( A为非空子集) (2)若 AB且 BC,则 ACB A集合 相等
3、 AB A 中的任一元素都属于 B, B中的任一元素都属于 A (1)A B (2)B A A(B)( 7)已知集合 A 有 ( 1)nn 个元素,则它有 2n 个子集,它有 21n 个真子集,它有 21n 个非空子集,它有 22n 非空真子集 . 2 【 1.1.3】集合的基本运算 ( 8) 交集、并集、补集 名称 记号 意义 性质 示意图 交集 AB | ,x x A 且xB ( 1) A A A ( 2) A ( 3) A B A A B B BA并集 AB | ,x x A 或xB ( 1) A A A ( 2) AA ( 3) A B A A B B BA补集 UA | , x x
4、U x A且1 ()UAA2 ()UA A U【补充知识】 含绝对值的不等式与一元二次不等式的解法 ( 1)含绝对值的不等式的解法 不等式 解集 | | ( 0)x a a | x a x a | | ( 0)x a a |x x a 或 xa | | , | | ( 0 )a x b c a x b c c 把 ax b 看 成 一 个 整 体 , 化 成 |xa ,| | ( 0)x a a型不等式来求解 ( 2)一元二次不等式的解法 判别式 2 4b ac 0 0 0 二次函数2 ( 0 )y a x b x c a 的图象 O( ) ( ) ( )U U UA B A B痧 ?( )
5、( ) ( )U U UA B A B痧 ?3 一元二次方程2 0 ( 0 )a x b x c a 的根 21 , 242b b a cxa (其中12)xx12 2bxx a 无实根 2 0 ( 0 )a x b x c a 的解集 1|x x x或2xx|x 2bx aR 2 0 ( 0 )a x b x c a 的解集 12 | x x x x 1.2函数及其表示 【 1.2.1】函数的概念 ( 1) 函数 的概念 设 A 、 B 是两个非空的数集,如果按照某种对应法则 f ,对于集合 A 中任何一个数 x ,在集合 B中都有唯一确定的数 ()fx和它对应,那么这样的对应(包括集合 A
6、 , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的一个函数,记作 :f A B 函数的三要素 :定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数 ( 2)区间的概念及表示法 设 ,ab是两个实数,且 ab ,满足 a x b 的实数 x 的集合叫做闭 区间,记做 , ab ;满足a x b 的实数 x 的集合叫做开 区间,记做 ( , )ab ;满足 a x b ,或 a x b 的实数 x 的集合叫做半开半 闭 区间,分别记做 , )ab , ( , ab ;满足 , , ,x a x a x b x b 的实数 x 的集合分别记做 , )
7、, ( , ) , ( , , ( , )a a b b 注意: 对于集合 | x a x b 与区间 ( , )ab ,前者 a 可以大于或等于 b ,而后者必须 ab ( 3)求函数的定义域时,一般遵循以下原则: ()fx是整式时,定义域是全体实数 ()fx是分式函数时,定义域是使分母不为零的一切实数 ()fx是偶次根式时,定义域是使被开方式为非负值时的实数的集合 4 对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1 tanyx 中, ()2x k k Z 零(负)指数幂的底数不能为零 若 ()fx是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一
8、般是各基本初等函数的定义域的交集 对于求复合函数定义域问题,一般步骤是:若已知 ()fx的定义域为 , ab ,其复合函数 ( )f g x的定义域应由不等式 ()a g x b解出 对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论 由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义 ( 4)求 函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数 值域与 最值的常用方法: 观察法:对于比较简
9、单的函数,我们可以通过观察直接得到 值域或最值 配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值 判别式法:若函数 ()y f x 可以化成一个系数含有 y 的关于 x 的二次方程2( ) ( ) ( ) 0a y x b y x c y ,则在 ) 0ay 时,由于 ,xy为实数,故必须有2 ( ) 4 ( ) ( ) 0b y a y c y ,从而确定函数的值域或最值 不等式法:利用基本不等式确定函数的值域或最值 换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题 反函数法:利用函数和它
10、的反函数的定义域与值域的互逆关系确定函数的值域或最值 数形结合法:利用函数图象或几何方法确定函数的值域或最值 函数的单调性法 【 1.2.2】函数的表示法 ( 5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系 列表法:就是列出表格来表示两个变量之间的对应关系 图象法:就是用图象表示两个变量之间的对应关系 ( 6)映射的概念 设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫
11、做集合 A5 y x o 到 B 的映射,记作 :f A B 给定一个集合 A 到集合 B 的映射,且 ,a A b B如果元素 a 和元素 b 对应,那么我们把元素b 叫做元素 a 的象,元素 a 叫做元素 b 的原象 1.3函数的基本性质 【 1.3.1】单调性与最大(小)值 ( 1)函数的单调性 定义及 判定方法 函数的 性 质 定义 图象 判定方法 函数的 单调性 如果对于属于定义域 I 内某个区间上的任意两个自变量的值 x1、 x2,当 x 1 f(x 2 ) ,那么就说f(x)在这个区间上是 减函数 y= f(X )yxo x x 2f( x )f( x )211( 1)利用定义
12、( 2)利用已知函数的单调性 ( 3)利用函数图象(在某个 区间 图 象下降为减) ( 4)利用 复合函数 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数 对于复合函数 ( )y f g x ,令 ()u g x ,若 ()y f u 为增, ()u g x 为增,则 ( )y f g x 为增;若 ()y f u 为减, ()u g x 为减,则 ( )y f g x 为增;若 ()y f u 为增, ()u g x 为减,则 ( )y f g x 为减;若 ()y f u 为减, ()u g x 为增,则 ( )y
13、 f g x 为减 ( 2)打“ ”函数 ( ) ( 0 )af x x ax 的图象与性质 ()fx分别在 ( , a 、 , )a 上为增函数,分别在 ,0)a 、 (0, a 上为减函数 6 ( 3)最大(小)值定义 一般地,设函数 ()y f x 的定义域为 I ,如果存在实数 M 满足:( 1)对于任意的 xI ,都有()f x M ; ( 2)存在0xI,使得0()f x M那么,我们称 M 是函数 ()fx 的最大值,记作max ()f x M 一般地,设函数 ()y f x 的定义域为 I ,如果存在实数 m 满足:( 1)对于任意的 xI ,都有()f x m ;( 2)存在
14、 0xI ,使得 0()f x m 那么,我们称 m 是函数 ()fx的最小值,记作max ()f x m 【 1.3.2】奇偶性 ( 4)函数的奇偶性 定义及 判定方法 函数的 性 质 定义 图象 判定方法 函数的 奇偶性 如果对于函数 f(x)定义域内任意一个 x,都有 f( x)= f(x) ,那么函数 f(x)叫做 奇函 数 ( 1)利用定义(要先判断 定义域是否关于原点对称) ( 2)利用图象(图象关于原点对称) 如果对于函数 f(x)定义域内任意一个 x,都有 f( x)= f(x) ,那么函数 f(x)叫做 偶函数 ( 1)利用定义(要先判断 定义域是否关于原点对称) ( 2)利
15、用图象(图象关于 y 轴对称) 若函数 ()fx为奇函数,且在 0x 处有定义,则 (0) 0f 奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在 y 轴两侧相对称的区间增减性相反 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数 补充知识函数的图象 ( 1)作图 利用描点法作图: 确定函数的定义域; 化解函数解析式; 讨论函数的性质(奇偶性、单调性); 画出函数的图象 利用基本函数图象的变换作图: 要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等
16、各种基本7 初等函数的图象 平移变换 0,0 , |( ) ( )hhy f x y f x h 左 移 个 单 位右 移 | 个 单 位0,0 , |( ) ( )kky f x y f x k 上 移 个 单 位下 移 | 个 单 位 伸缩变换 0 1 ,1,( ) ( )y f x y f x 伸缩 0 1 ,1,( ) ( )AAy f x y A f x 缩伸 对称变换 ( ) ( )xy f x y f x 轴 ( ) ( )yy f x y f x 轴 ( ) ( )y f x y f x 原 点 1( ) ( )yxy f x y f x 直 线 ( ) ( | | )yyyy
17、 f x y f x 去 掉 轴 左 边 图 象保 留 轴 右 边 图 象 , 并 作 其 关 于 轴 对 称 图 象 ( ) | ( ) |xxy f x y f x 保 留 轴 上 方 图 象将 轴 下 方 图 象 翻 折 上 去 ( 2)识图 对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系 ( 3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法 第二章 基本初等函数 ( ) 2.1指数函数
18、【 2.1.1】指数与指数幂的运算 ( 1)根式的概念 如果 , , , 1nx a a R x R n ,且 nN,那么 x 叫做 a 的 n 次方根 当 n 是奇数时,a 的 n 次方根用符号 na 表示; 当 n 是偶数时,正数 a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根 式子 na 叫做根式,这里 n 叫做根指数, a 叫做被开方数 当 n 为奇数时, a 为任意实数;当n 为偶数时, 0a 根式的性质: ()nn aa ;当 n 为奇数时, n naa ;当 n 为偶数时, ( 0 )|( 0
19、) n naaaaaa 8 ( 2)分数指数幂的概念 正数的正分数指数幂的意义是: ( 0 , , ,m n mna a a m n N 且 1)n 0 的正分数指数幂等于 0 正数的负分数指数幂的意义是: 11( ) ( ) ( 0 , , ,mm mnnna a m n Naa 且 1)n 0的负分数指数幂没有意义 注意口诀: 底数取倒数,指数取相反数 ( 3)分数指数幂的运算性质 ( 0 , , )r s r sa a a a r s R ( ) ( 0 , , )r s r sa a a r s R ( ) ( 0 , 0 , )r r ra b a b a b r R 【 2.1.2
20、】指数函数及其性质 ( 4)指数函数 函数名称 指数函数 定义 函数 (0xy a a且 1)a 叫做指数函数 图象 1a 01a 定义域 R 值域 (0, ) 过定点 图象过定点 (0,1) ,即当 0x 时, 1y 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的 变化情况 1 ( 0 )1 ( 0 )1 ( 0 )xxxaxaxax1 ( 0 )1 ( 0 )1 ( 0 )xxxaxaxaxa 变化对 图象的影响 在第一象限内, a 越大图象越高;在第二象限内, a 越大图象越低 2.2对数函数 0 1 xayxy(0,1)O1y0 1 xayxy(0,1)O1
21、y9 【 2.2.1】对数与对数运算 ( 1) 对数的定义 若 ( 0 , 1 )xa N a a 且 ,则 x 叫做以 a 为底 N 的对数,记作 logaxN,其中 a 叫做底数,N 叫做真数 负数和零没有对数 对数式与指数式的互化: l o g ( 0 , 1 , 0 )xax N a N a a N ( 2)几个重要的对数恒等式 log 1 0a , log 1a a , log ba ab ( 3)常用对数与自然对数 常用对数: lgN ,即10log N;自然对数: lnN ,即 loge N(其中 2.71828e ) ( 4)对数的运算性质 如果 0 , 1 , 0 , 0a
22、a M N ,那么 加法: l o g l o g l o g ( )a a aM N M N减法: l o g l o g l o ga a a MMN N数乘: l o g l o g ( )naan M M n R loga NaN l o g l o g ( 0 , )b n aanM M b n Rb 换底公式: l o gl o g ( 0 , 1 )l o g ba b NN b ba 且【 2.2.2】对数函数及其性质 ( 5)对数函数 函数 名称 对数函数 定义 函数 lo g ( 0ay x a且 1)a 叫做对数函数 图象 1a 01a 定义域 (0, ) 值域 R 0
23、1 xyO (1,0)1xlogayx0 1 xyO(1,0)1xlogayx10 过定点 图象过定点 (1,0) ,即当 1x 时, 0y 奇偶性 非奇非偶 单调性 在 (0, ) 上是增函数 在 (0, ) 上是减函数 函数值的 变化情况 l o g 0 ( 1 )l o g 0 ( 1 )l o g 0 ( 0 1 )aaaxxxxxx l o g 0 ( 1 )l o g 0 ( 1 )l o g 0 ( 0 1 )aaaxxxxxx a 变化对 图象的影响 在第一象限内, a 越大图象越靠低;在第四象限内, a 越大图象越靠高 (6)反函数的概念 设函数 ()y f x 的定义域为
24、A ,值域为 C ,从式子 ()y f x 中解出 x ,得式子 ()xy 如果对于 y 在 C 中的任何一个值,通过式子 ()xy , x 在 A 中都有唯一确定的值和它对应,那么式子 ()xy 表示 x 是 y 的函数,函数 ()xy 叫做函数 ()y f x 的反函数,记作 1()x f y ,习惯上改写成 1()y f x ( 7)反函数的求法 确定反函数的定义域,即原函数的值域;从原函数式 ()y f x 中反解出 1()x f y ; 将 1()x f y 改写成 1()y f x ,并注明反函数的定义域 ( 8)反函数的性质 原函数 ()y f x 与反函数 1()y f x 的
25、图象关于直线 yx 对称 函数 ()y f x 的定义域、值域分别是其反函数 1()y f x 的值域、定义域 若 ( , )Pab 在 原函数 ()y f x 的图象上,则 ( , )P b a 在反函数 1()y f x 的图象上 一般地,函数 ()y f x 要有反函数则它必须为单调函数 2.3幂函数 ( 1)幂函数的定义 一般地,函数 yx 叫做 幂函数,其中 x 为自变量, 是常数 ( 2)幂函数的图象 11 ( 3) 幂函数的性质 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象 幂函数是偶函数时,图象分布在第一、二象限 (图象关于 y 轴对称 );是奇函数时,图象分布在
26、第一、三象限 (图象关于原点对称 );是非奇非偶函数时,图象只分布在第一象限 过定点:所有的 幂函数在 (0, ) 都有定义,并且图象都通过点 (1,1) 单调性:如果 0 ,则幂函数的图象过原点,并且在 0, ) 上为增函数 如果 0 ,则幂函数的图象在 (0, ) 上为减函数,在第一象限内,图象无限接近 x 轴与 y 轴 奇偶性:当 为奇数时,幂函数为奇函数,当 为偶数时,幂函数为偶函数当 qp(其中 ,pq互质, p 和 qZ ), 若 p 为奇数 q 为奇数时,则 qpyx 是奇函数,若 p 为奇数 q 为偶数时,则 qpyx是偶函数, 若 p 为偶数 q 为奇数时,则 qpyx 是非
27、奇非偶函数 图象特征: 幂函数 , ( 0 , )y x x ,当 1 时,若 01x,其图象在直线 yx 下方,若1x ,其图象在直线 yx 上方,当 1 时,若 01x,其图象在直线 yx 上方,若 1x ,其图象在直线 yx 下方 补充知识二次函数 ( 1)二次函数解析式的三种形式 一般式: 2( ) ( 0 )f x a x b x c a 顶点式: 2( ) ( ) ( 0 )f x a x h k a 两根式:12( ) ( ) ( ) ( 0 )f x a x x x x a ( 2)求二次函数解析式的方法 已知三个点坐标时,宜用一般式 已知抛物线的顶点坐标或与对称轴有关或与最大
28、(小)值有关时,常使用顶点式 若已知抛物线与 x 轴有两个交点,且横线坐标已知时,选用两根式求 ()fx更方便 ( 3) 二次函数图象的性质 二次函数 2( ) ( 0 )f x a x b x c a 的图象是一条抛物线,对称轴方程为 ,2bx a顶点坐标是24( , )24b a c baa 当 0a 时,抛物线开口向上,函数在 ( , 2ba 上递减,在 , )2ba 上递增,当2bx a时,2m i n4() 4a c bfx a ; 当 0a 时,抛物线开口向下,函数在 ( , 2ba 上递增,在 , )2ba 上12 递减,当2bx a时, 2m a x4() 4a c bfx a
29、 二次函数 2( ) ( 0 )f x a x b x c a 当 2 40b ac 时,图象与 x 轴有两个交点1 1 2 2 1 2 1 2( , 0 ) , ( , 0 ) , | | | | |M x M x M M x x a ( 4)一元二次方程 2 0 ( 0 )a x b x c a 根的分布 一元二次方程根的分布是二次函数中的重要内容 , 这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用 ,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程 2 0 ( 0 )a x b
30、x c a 的两实根为12,xx,且12xx令2()f x a x b x c ,从以下四个方面来分析此类问题: 开口方向: a 对称轴位置:2bx a判别式: 端点函数值符号 k x1 x2 xy1x 2x0aOabx20)( kfkxy1x 2xOabx2k0a0)( kf x1 x2 k xy1x2x0aOabx2k0)( kfxy1x 2xOabx2k0a 0)( kf x1 k x2 af(k) 0 0)( kfxy1x 2x0aOkxy1x 2xOk0a0)( kf13 k1 x1 x2 k2 xy1x 2x0aO1k 2k0)( 1 kf 0)(2 kfabx2xy1x 2xO0
31、a1k2k0)( 1 kf0)( 2 kfabx2有且仅有一个根 x1(或 x2)满足 k1 x1(或 x2) k2 f(k1)f(k2) 0,并同时考虑 f(k1)=0或 f(k2)=0 这两种情况是否也符合 xy1x2x0aO1k2k0)( 1 kf0)( 2 kfxy1x 2xO0a1k2k0)( 1 kf0)( 2 kf k1 x1 k2 p1 x2 p2 此结论可直接由推出 ( 5) 二次函数 2( ) ( 0 )f x a x b x c a 在闭区间 , pq 上的最值 设 ()fx在区间 , pq 上的 最大值为 M ,最小值为 m ,令0 1 ()2x p q ()当 0a
32、时(开口向上) 若2b pa,则 ()m f p 若2bpqa ,则 ()2bmfa若2b qa,则()m f q 若02b xa,则 ()M f q 02b xa,则 ()M f p x y 0 a O a b x 2 p q f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) ()2bf a0x14 ( )当 0a 时 (开口向下 ) 若2b pa,则 ()M f p 若2bpqa ,则 ()2bMf
33、a若2b qa,则()M f q 若02b xa,则 ()m f q 02b xa,则 ()m f p 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 )( Dxxfy ,把使 0)( xf 成立的实数 x 叫做函数)( Dxxfy 的零点。 2、函数零点的意义:函数 )(xfy 的零点就是方程 0)( xf 实数根,亦即函数 )(xfy 的图象与 x 轴交点的横坐标。即: 方程 0)( xf 有实数根 函数 )(xfy 的图象与 x 轴有交点 函数 )(xfy 有零点 3、函数零点的求法: 求函数 )(xfy 的零点: 1 (代数法)求方程 0)( xf 的实数根
34、; 2 (几何法)对于不能用求根公式的方程,可以将它与函数 )(xfy 的图象联系起来,并利用函数的性质找出零点 4、二次函数的零点: 二次函数 )0(2 acbxaxy ),方程 02 cbxax 有两不等实根,二次函数的图象与 x 轴有两个交点,二次函数有两个零点 ),方程 02 cbxax 有两相等实根(二重根),二次函数的图象与 x 轴有一个交点,二次函数有一个二重零点或二阶零点 ),方程 02 cbxax 无实根,二次函数的图象与 x 轴无交点,二次函数无零点 x y 0 a O a b x 2 p q f(p) f(q) ()2bf a0xx y 0 a O a b x 2 p q
35、 f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) f(q) ()2bf ax y 0 a O a b x 2 p q f(p) f(q) ()2bf a0xx y 0 a O a b x 2 p q f(p) f(q) ()2bf a0x15 高中数学 必修 2 知识点 第一章 空间几何体 1.1 柱、锥、台、球的结构特征 1.2 空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3 直
36、观图:斜二测画法 4 斜二测画法的步骤: ( 1) .平行于坐标轴的线依然平行于坐标轴; ( 2) .平行于 y 轴的线长度变半,平行于 x, z 轴的线长度不变; ( 3) .画法要写好。 5 用斜二测画法画出长方体的步骤:( 1)画轴( 2)画底面( 3)画侧棱( 4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1 棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积 2rrlS 4 圆台的表面积 22 RRlrrlS 5 球的表面积 24 RS (二)空间几何体的体积 1 柱体的体积 hSV 底2 锥体的 体积 hSV 底313 台体的体积 h
37、SSSSV )31 下下上上(4 球体的体积 334 RV 第二章 直线与平面的位置关系 2.1 空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 ( 1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成 450,且横边画成邻边的 2 倍长(如图) ( 2)平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。 3 三个公理: ( 1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A L B L = L
38、A 222 rrlS D C B A L A 16 B 公理 1 作用:判断直线是否在平面内 ( 2)公理 2:过不在一条直线上的三点,有且只有一个平面。 符号表示为: A、 B、 C 三点不共线 = 有且只有一个平面, 使 A、 B、 C。 公理 2 作用:确定一个平面的依据。 ( 3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为: P = =L,且 P L 公理 3 作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面
39、内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理 4:平行于同一条直线的两条直线互相平行。 符号表示为:设 a、 b、 c 是三条直线 a b c b 强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理 4 作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: a与 b所成的角的大小只由 a、 b 的相互位置来确定,与 O 的选择无关,为简便,点 O 一般取在两直线中的一条上; 两条异面直线所成的角 (0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂
40、直,记作 a b; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: ( 1)直线在平面内 有无数个公共点 ( 2)直线与平面相交 有且只有一个公共点 ( 3)直线在平面平行 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a 来表示 a a =A a 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平 行,则该直线与此平面
41、平行。 C B A P L 共面直线 =a c 217 简记为:线线平行,则线面平行。 符号表示: a b = a a b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a b a b = P a b 2、判断两平面平行的方法有三种: ( 1)用定义; ( 2)判定定理; ( 3)垂直于同一条直线的两个平面平行。 2.2.3 2.2.4 直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a a a
42、 b = b 作用:利用该定理可解决直线间的平行问题。 2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示: = a a b = b 作用:可以由平面与平面平行得出直线与直线平行 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定 1、 定义 如果直线 L 与平面内的任意一条直线都垂直,我们就说直线 L 与平面互相垂直,记作 L,直线 L 叫做平面的 垂线,平面叫做直线 L 的垂面。如图,直线与平面垂直时 ,它们唯一公共点 P 叫做垂足。 L p 18 2、判定定理: 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定
43、理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2 平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭 l B 2、二面角的记法:二面角 -l-或 -AB- 3、两个平面互相垂直的判定定理: 一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 2.3.4 直线与平面 、 平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。 2 性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 本章知识结构框图 第三章 直线与方程 3.1 直线的倾斜角和斜率 3.1 倾斜角和斜率 1、直线的倾斜角的概念:当直线 l 与 x 轴相交时 , 取 x 轴作为基准 , x 轴正向与直线 l 向上方向之间所成的角叫做直线 l 的倾斜角 .特别地 ,当直线 l与 x 轴平行或重合时 , 规定 = 0 . 2、 倾斜角的取值范围: 0 180 . 当直线 l与 x 轴垂直时 , = 90 . 3、直线的斜率 : 一条直线的倾斜角 ( 90 )的正切值叫做这条直线的斜率 ,斜率常用小写字母 k 表示 ,也就是 k = tan 当直线 l 与 x 轴平行或重合时 , =0 , k = tan0 =0;