BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf

上传人:boatfragile160 文档编号:397806 上传时间:2018-10-18 格式:PDF 页数:24 大小:3.99MB
下载 相关 举报
BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf_第1页
第1页 / 共24页
BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf_第2页
第2页 / 共24页
BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf_第3页
第3页 / 共24页
BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf_第4页
第4页 / 共24页
BS PD IEC TS 62607-4-2-2016 Nanomanufacturing Key control characteristics Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials density.pdf_第5页
第5页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Nanomanufacturing Key control characteristics P a r t 4 - 2 : N a n o - e n a b l e d e l e c t r i c a l e n e r g y s t o r a g e P h y s i c a l c h a r a c t e r i z a t i o n o f c a t h o d e n a n o m a t e r i a l s , d e n s i t y m e a s u r e m e n t PD IEC/TS 62607-4-2:2016 BSI Standards

2、 Publication WB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06National foreword This Published Document is the UK implementation of IEC/TS 62607-4- 2:2016. The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies. A list of organizations represented

3、 on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 8

4、9475 6 ICS 07.120 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 November 2016. Amendments/corrigenda issued since publication Date Text affected PUBLISHE

5、D DOCUMENT PD IEC/TS 62607-4-2:2016 IEC TS 62607-4-2 Edition 1.0 2016-10 TECHNICAL SPECIFICATION Nanomanufacturing Key control characteristics Part 4-2: Nano-enabled electrical energy storage Physical characterization of cathode nanomaterials, density measurement INTERNATIONAL ELECTROTECHNICAL COMMI

6、SSION ICS 07.120 ISBN 978-2-8322-3697-0 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colour inside PD IEC/TS 62607-4-2:2016 2 IEC TS 62607-4-2:2016 IEC 2016 CONTENTS FOREWORD . 4 INTRODUCTI

7、ON . 6 1 Scope 7 2 Normative references 7 3 Terms, definitions, and abbreviated terms . 7 3.1 Terms and definitions 7 3.2 Abbreviated terms . 8 4 Sample preparation methods . 8 4.1 Sieving . 8 4.2 Drying . 8 5 Test methods . 8 5.1 Compacted density . 8 5.1.1 General . 8 5.1.2 Apparatus 9 5.1.3 Measu

8、rement steps . 9 5.1.4 Data analysis / interpretation of results 9 5.1.5 Precision of the method . 10 5.2 Rolling density 10 5.2.1 General . 10 5.2.2 Apparatus 11 5.2.3 Measurement steps . 11 5.2.4 Data analysis / interpretation of results 11 5.2.5 Repeatability of the method . 12 6 Uncertainty 12 A

9、nnex A (informative) Case study 13 A.1 Sample preparation . 13 A.1.1 Schematic figures of die for measuring compacted density and rolling density . 13 A.1.2 Compacted density measurement results for LFP nanomaterial . 15 A.2 Rolling density sample preparation case study 17 A.2.1 Procedures of rollin

10、g density sample preparation . 17 A.2.2 Rolling density measurement results for LFP nanomaterial 18 Bibliography 20 Figure 1 Appearance of die for compacted density measurement . 10 Figure 2 Appearance of die with compressor 10 Figure A.1 Three-dimensional schematic of die for compacted density meas

11、urement . 13 Figure A.2 Engineering schematic of die for compacted density measurement . 14 Figure A.3 Schematic of rolling machine for rolling density measurement. 15 Figure A.4 Results consistency of sample A in Table A.1 . 16 Figure A.5 Results consistency of sample B in Table A.2 . 17 Figure A.6

12、 Procedures of rolling density sample preparation 18 Figure A.7 Results consistency of sample C in Table A.3 . 19 PD IEC/TS 62607-4-2:2016IEC TS 62607-4-2:2016 IEC 2016 3 Table A.1 Measurement method consistency and measurement results of sample A 15 Table A.2 Measurement method consistency and meas

13、urement results of sample B 16 Table A.3 Measurement method consistency and measurement results of sample C 19 PD IEC/TS 62607-4-2:2016 4 IEC TS 62607-4-2:2016 IEC 2016 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ NANOMANUFACTURING KEY CONTROL CHARACTERISTICS Part 4-2: Nano-enabled electrical energy

14、storage Physical characterization of cathode nanomaterials, density measurement FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promo

15、te international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (

16、hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non- governmental organizations liaising with the IEC also

17、 participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possib

18、le, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. Whil

19、e all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake t

20、o apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5) IEC itself does not provide any attestatio

21、n of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 6) All users should ensure that they have the latest edition of thi

22、s publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or ind

23、irect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for t

24、he correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to

25、 prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or the subject is still under techni

26、cal development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards. IEC

27、TS 62607-4-2, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems. PD IEC/TS 62607-4-2:2016IEC TS 62607-4-2:2016 IEC 2016 5 The text of this Technical Specification is based on the following documents: Enquiry

28、 draft Report on voting 113/289/DTS 113/328/RVC Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts

29、in the IEC 62607 series, published under the general title Nanomanufacturing Key control characteristics, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under “http:/webstore.ie

30、c.ch“ in the data related to the specific publication. At this date, the publication will be transformed into an International Standard, reconfirmed, withdrawn, replaced by a revised edition, or amended. A bilingual version of this publication may be issued at a later date. IMPORTANT The colour insi

31、de logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. PD IEC/TS 62607-4-2:2016 6 IEC TS 62607-4-2:2016 IEC 2016 INTRODUCTION

32、Compared with normal bulk materials, nanomaterials often exhibit many unique properties, such as mechanical, thermal, magnetic, optical and electrochemical properties. Decreasing particle size of the cathode materials, e.g. lithium iron phosphate (LFP), down to nanoscale greatly enhances their elect

33、rochemical performance. For example, smaller particle size will shorten the diffusion length of lithium ion during lithium intercalation/de-intercalation process. Higher surface area will increase the electrode/electrolyte contact area, and subsequently improve the high current charge/discharge rate

34、s. Furthermore, the particle surfaces may introduce a sub-gap, which can smooth the electrode discharge curve, then help to prolong the cycling life of the electrode. Density is one of the key control characteristics for cathode nanomaterials and affects the performance of electronic energy storage

35、devices significantly. At an appropriate density, the electrochemical performance, such as low-temperature and high-temperature charge/discharge, and the ratio of charge/discharge capability, will be dramatically increased. Among different densities, changing the compacted density of cathode nanomat

36、erials to a suitable value can increase their charge capacity, decrease the internal resistance, lower the polarization effect, increase cycling life of electrical energy storage devices, and improve the usability of electrical energy storage devices. It is important to find the optimum compacted de

37、nsity for the electronic energy storage device design. If the compacted density is too large or too small, the intercalation and de-intercalation of ions will be affected. In general, compacted density is in a positive correlation to the devices specific capacity, and is considered as one of the key

38、 parameters for material energy density. Rolling density affects the electrochemical performance characteristics of cathode nanomaterials in a similar way. Rolling density indicates the ratio of the mass of coating slurry compound to its volume. Rolling density is a valuable quantity not only for ev

39、aluating the volumetric energy density, but also for selecting a cathode nanomaterial candidate for Hybrid- Electric Vehicles (also known as HEVs) and Electric Vehicles (also known as EVs). Both of these two types of properties need to be considered in the density assessment of a nano-enabled electr

40、ical energy storage device. Comparable results will be used to judge the consistence of cathode nanomaterials, which relates to performance and safety issues. Therefore, a standardized density measurement procedure for cathode nanomaterials becomes indispensable to its users for comparing the values

41、 of nanomaterials from different suppliers. This standardized method is intended for use in comparing the characteristics of cathode nanomaterials in the study stage, not for evaluating the electrode in end-products. The method is applicable to materials exhibiting function or performance only possi

42、ble with nanotechnology, intentionally added to the active materials to measurably and significantly change the characteristics of electrical energy storage devices. PD IEC/TS 62607-4-2:2016IEC TS 62607-4-2:2016 IEC 2016 7 NANOMANUFACTURING KEY CONTROL CHARACTERISTICS Part 4-2: Nano-enabled electric

43、al energy storage Physical characterization of cathode nanomaterials, density measurement 1 Scope This part of IEC 62607, which is a Technical Specification, provides a standardized method for the determination of the density of cathode nanomaterials in powder form used for electrical energy storage

44、 devices. This method provides users with a key control characteristic to decide whether or not a cathode nanomaterial is usable, or suitable for their application. This document includes definitions of terminology used in this document, recommendations for sample preparation, outlines of the experi

45、mental procedures used to measure cathode nanomaterial properties, methods of interpretation of results and discussion of data analysis, case studies, and references. 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitute

46、s requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TS 80004-1, Nanotechnologies Vocabulary Part 1: Core terms 3 Terms, definitions, and abbreviated terms

47、3.1 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/TS 80004-1 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: IEC Electropedia: available at http:/www.electropedia.org/ ISO

48、Online browsing platform: available at http:/www.iso.org/obp 3.1.1 cathode nanomaterial material used as a cathode in a nano-enabled energy storage device which contains a fraction of nanomaterial and exhibits function or performance made possible only with the application of nanotechnology PD IEC/T

49、S 62607-4-2:2016 8 IEC TS 62607-4-2:2016 IEC 2016 Note 1 to entry: The cathode is a multilayered foil consisting of (1) an aluminium current collector, (2) an optional adhesion promoting carbon layer (to enhance cathode layer adhesion if necessary) and (3) the cathode layer. This cathode layer consists of the active phase (e.g. lithium containing mixed oxides or phosphate, such as LFP), a conducting phase (carbon black) and an organic binder

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1