[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc

上传人:outsidejudge265 文档编号:843382 上传时间:2019-02-21 格式:DOC 页数:21 大小:1.10MB
下载 相关 举报
[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc_第1页
第1页 / 共21页
[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc_第2页
第2页 / 共21页
[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc_第3页
第3页 / 共21页
[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc_第4页
第4页 / 共21页
[考研类试卷]考研数学二(概率论与数理统计)模拟试卷2及答案与解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、考研数学二(概率论与数理统计)模拟试卷 2 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 F1(x)和 F2(x)分别为 X1 和 X2 的分布函数,为使 F(x)=aF1(x)+bF2(x)是某一随机变量的分布函数,在下列给定的各组数中应取( )2 设连续型随机变量 X 的分布函数和概率密度函数分别为 F(x)和 f(x),则( )(A)0f(x)1 (B) P(X=x)F(x)(C) P(X=x)=F(x)(D)P(X=z)=f(z) 3 设随机变量 X 服从正态分布 N(0,1),对给定的 (0,1) ,数 u 满足 P(Xu )=,若使等式 P(X

2、x)=095 成立,则 x=( )(A)u 0.475(B) u0.975(C) u0.025(D)u 0.054 设随机变量 X 的概率密度为 f(x),且有 f(一 x)=f(x),F(x) 为 X 的分布函数,则对任意实数 a,有 ( )(A)F(-a)=1 一 0af(x)dx(B) F(-a)= 一 0af(x)dx(C) F(-a)=F(a)(D)F(-a)=2F(a)-15 设随机变量 X 服从 N(1, 12),Y 服从 N(2, 22),且 PX- 11)PX-21),则( )(A) 1 2(B) 1 2(C) 1 2(D) 1 26 设 X 服从 N(, 2),且 PXPx

3、 ,则( )(A)(B) (C) =(D), 的大小关系不能确定7 设随机变量 Y 在0,1上服从均匀分布,F(x)(0F(x)1)是严格单调递减且连续的函数,则由关系式 Y=F(X)定义的随机变量 X 的分布函数是( )(A)F(x)(B) F-1(x)(C) 1 一 F(x)(D)1 一 F-1(x)二、填空题8 设 X 的概率密度为 f(x),分布函数为 F(x),对固定的 x0,若使函数为某随机变量的概率密度,则 k=_9 设随机变量 X 的概率密度为 f(x)= ,表示对 X 独立的三次观察中事件X 出现的次数,则 PY=2=_。10 一射手进行射击,击中目标的概率为 p(0p1),

4、现在他领到 5 发子弹,进行射击直到命中目标或子弹用完为止,以 X 表示他射击实际脱靶的次数,则 Px=1=_11 设随机变量 X 服从正态分布 N(, 2)(0),且二次方程 y2+4y+X:0 无实根的概率为 ,则 =_。12 设随机变量 X 在区间a,b(a0)上服从均匀分布,且 P0x3=,则 P-1X5=_ 。13 设随机变量 X 的概率密度为 f(x)= ,且 aX+b 服从 N(0,1)(a0),则常数 A=_,a=_,b=_14 设随机变量 X 服从 N(2, 2),且 P2X4=03,则 PX0=_15 已知随机变量 X 的分布函数 F(x)是连续的严格单调函数,Y=1 一

5、2X,F(0 25)=075 ,PYk=025,则 k=_三、解答题解答应写出文字说明、证明过程或演算步骤。16 设随机变量 X 的概率分布为 PX=k=C ,k=1,2,0,求常数 C。17 设连续型随机变量 X 的分布函数为 F(x)= ,试求(1)常数 A, B;(2)随机变量 X 落在( )内的概率;(3)X 的概率密度函数.18 已知随机变量 X 的概率密度为 f(x)= ,求(1)常数 a,b 的值; (2) 。19 设随机变量 X 的概率分布为 PX=k=的概率分布20 设某地在任何长为 t 的时间间隔内发生地震的次数 X 服从参数为 t 的泊松分布,时间以周计,0,(1)设 T

6、 为两次地震之间的间隔时间,求 T 的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续 8 周无地震的条件下,在未来 7周内仍无地震的概率21 设在一段时间内进入某商店的顾客人数 X 服从参数为 的泊松分布,每个顾客购买某件物品的概率为 p(0p1),并且每个顾客购买该物品是相互独立的,以Y 表示购买这种物品的顾客人数,求 Y 的概率分布22 设连续型随机变量 X 的概率密度为 f(x)= ,求(1)k 的值;(2)X的分布函数 F(x)23 已知随机变量 X 的概率密度为 fX(x)= e-|x|,一x+ ,又设求(1)求 x 的分布函数;(2) 求 y 的概率分布和分布函数

7、;(3)计算pY 。24 设连续型随机变量 X 的概率密度为 f(x),分布函数为 F(x),当 x0 时满足xf(x)=(1 一 x)f(x),当 x0 时,f(x)=0 问常数 a 为何值时,概率 PaXa+1最大25 设随机变量 X 的绝对值不大于 1,且 Px=-1= ,在事件X 1出现的条件下,X 在(一 1,1) 内任一子区间上取值的条件概率与该子区间长度成正比,求(1)X 的分布函数 F(x);(2)PX 2=126 设随机变量 X 的分布函数为 F(x),如果 F(0)= ,概率密度 f(x)=af1(x)+bf2(x),其中 f1(x)是正态分布 N(0,) 的密度函数 f2

8、(x)是参数为 的指数分布的密度函数,求常数 a,b27 设随机变量 X 的概率密度为 f(x)= ,一x+ ,求 Y=arctan X 的概率密度。28 设随机变量 X 的概率密度为 f(x)= ,求 Y=sin X 的概率密度29 设 x 的概率密度为 f(x)= ,F(x)是 x 的分布函数,求 Y=F(x)的分布函数和概率密度。30 设随机变量 x 的概率密度 f(x)= ,求(1) 常数 k;(2)若使 PXa=04,求常数 a 的取值范围;(3)求 Y=x的概率密度 fY(y)31 设随机变量 X 的概率密度 f(x)= ,求 Y=X2 的概率密度32 设随机变量 X 和 Y 相互

9、独立,且都服从标准正态分布 N(0,1),求 Z=(X+Y)2 的概率密度 fZ(Z)33 设随机变量 X 在区间(一 2,3)上服从均匀分布, Y= ,求 y 的分布函数。考研数学二(概率论与数理统计)模拟试卷 2 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 A【试题解析】 本题考查分布函数的性质,如果 X 分布函数为 F(x),则 F(一)=0, F(+)=1,可以得到 a,b 应满足的关系 由已知 F1(+)=F(+)=1,从而F(+)=a+b=1,满足该关系的只有 (A)【知识模块】 概率论与数理统计2 【正确答案】 B【试题解析】 本题主

10、要考查连续型随机变量分布的概念和性质,分布函数是事件的概率,即 F(x)=PXx,需要注意概率密度 f(x)=F(x),其本身并不表示事件的概率 因为 f(x)0,没有 f(x)1 的限制,故(A)错误又 F(x)=PXx,而事件X=x Xx,从而 P(X=x)F(x),故(B) 是正确的,选项(C) 错误 P(X=x)=0f(x),故选项(D) 错误【知识模块】 概率论与数理统计3 【正确答案】 C【试题解析】 本题考查标准正态分布上侧分位点的概念,可以利用概率密度图形分析 如图 21 所示由 P(Xx)=095,得 P(Xx)=1 一P(Xx)=0 05,故 x= =u0.025,从而应选

11、 C【知识模块】 概率论与数理统计4 【正确答案】 B【试题解析】 由分布函数的定义,将其用概率密度表示,再通过积分换元可得结果 因为 f(-x)=f(x), -0f(x)dx=0+f(x)dx= 而 F(一 a)=-af(x)dx=-0f(x)dx+0-af(x)dx,令 x=一 t,则 0-af(x)dx=一 0af(一 t)dt=一 0af(t)dt=一 0af(x)dx,所以 F(一 a)= 一 0af(x)dx,故应选 B【知识模块】 概率论与数理统计5 【正确答案】 A【试题解析】 【知识模块】 概率论与数理统计6 【正确答案】 A【试题解析】 【知识模块】 概率论与数理统计7 【

12、正确答案】 C【试题解析】 设 X 的分布函数是 FX(x)=Pxx=PF(X)F(x)=PYF(x),由于Y 在0 ,1 上服从均匀分布,故 FX(x)=PYF(x)= =1F(x),因此选(C)【知识模块】 概率论与数理统计二、填空题8 【正确答案】 1【试题解析】 考查概率密度的性质如果 X 为连续型随机变量,概率密度为 f(x),则主要利用 -+f(x)dx=1 求取 f(x)中未知参数,本题还要注意 F(x)=f(x)由题意,要求 g(x)0, -+g(x)dx=1,即有从而k=1【知识模块】 概率论与数理统计9 【正确答案】 【试题解析】 本题的关键是判断出 Y 的概率分布由于 Y

13、 表示对 X 独立的三次观察中事件x 出现的次数,因此 Y 服从二项分布 B(3,p) ,而 p=PX 由已知Y 服从二项分布 B(3p)【知识模块】 概率论与数理统计10 【正确答案】 P(1-p)【试题解析】 考查独立重复试验中的“有限几何分布”,需要具备把实际问题提炼成概率模型的能力计算事件X=1的概率,关键是理解清楚它的含义,即X=1相当于事件”“第 1 次脱靶而第 2 次命中”设 A 表示事件“第 2 次命中”则PX=1=P(A)=P(1-p)【知识模块】 概率论与数理统计11 【正确答案】 4【试题解析】 二次方程 y2+4y+X=0 无实根的概率为 ,即 P4 2 一 4X0=P

14、X4= 正态分布概率密度曲线关于 x= 对称,故 PXPX= ,从而 =4【知识模块】 概率论与数理统计12 【正确答案】 【试题解析】 【知识模块】 概率论与数理统计13 【正确答案】 由已知,f(x)= 又 aX+bN(一 a+b,2a 2),得一 a+b=0,2a 2=1,从而 a=b= 【试题解析】 考查正态分布密度函数的形式和其线性函数的分布,将 f(x)与正态分布的密度表达式做对应分析【知识模块】 概率论与数理统计14 【正确答案】 02【试题解析】 【知识模块】 概率论与数理统计15 【正确答案】 05【试题解析】 因为 PYk=P1 一 2Xk=px =025,F(025)=P

15、X025=075,从而 =025,解得 k=05【知识模块】 概率论与数理统计三、解答题解答应写出文字说明、证明过程或演算步骤。16 【正确答案】 【试题解析】 如果 X 为离散型随机变量,其概率分布为 PX=xi=pi,i=1,2,则主要利用性质 =1 求未知参数注意,此分布不是 k=0开始的泊松分布【知识模块】 概率论与数理统计17 【正确答案】 【试题解析】 考查分布函数的性质连续型随机变量的分布函数是连续函数,直接解答即可【知识模块】 概率论与数理统计18 【正确答案】 【试题解析】 题中概率密度表达式有两个未知参数,可以利用性质和所给事件的概率联合求出,再利用分布计算所求事件的概率【

16、知识模块】 概率论与数理统计19 【正确答案】 由 ,故 C=2【试题解析】 求离散型随机变量的概率分布先要确定随机变量可能所取的值,再计算取各值的概率本题需要先利用分布的性质确定常数 C,再确定 Y 可能取的值,计算概率即可当 X=1,5,9,时,Y=1,当 X=2,4,6,时,Y=0,当X=3, 7,11,时,Y= 一 1,【知识模块】 概率论与数理统计20 【正确答案】 (1)由已知条件,X 服从参数为 t 的泊松分布,其概率分布为 PX=k= ,k=0 ,1,2, 设 T 的分布函数为 FT(t)=PTt,t0 当t0 时,F T(t)=0; 当 t0 时,在一次地震后的时间 t 内无

17、地震的事件可表示为PTt=PX=0=e -t,T 的分布函数 FT(t)=PTt=1PTt)=1e -t,综上,(3)所求概率为 PT15 T8=PT7=1-PT7=e -7 注:指数分布的无记忆性:如果 X 服从参数为 的指数分布,则对于任意实数 s,t0,有PTs+tTs=PTt【试题解析】 主要考查指数分布及其无记忆性可由 T 的分布函数的定义式PTt着手求 T 的分布函数的实质是计算事件Tt 的概率,关键是找到发生地震的次数 X 与 T 的联系【知识模块】 概率论与数理统计21 【正确答案】 由题意 Px=n= ,n=0 ,1,2,又 PY=kX=n=Cnkpk(1-p)n-k,k=0

18、 ,1, 2,n即 Y 服从参数为 p 的泊松分布【试题解析】 考查离散型随机变量概率分布的计算本题关键是能够识别购买某物品的人数 Y 服从的是进入人数为 x=n 人的条件下的二项分布,且受进入商店人数的影响,可以使用全概率公式【知识模块】 概率论与数理统计22 【正确答案】 (1)由 01xdx+12k(2 一 x)dx= =1,得 k=1 (2)因为 F(x)=-xf(t)dt,所以 当 x0 时, F(x)=0; 当 0x1 时 F(x)=0xf(t)dt= x2; 当 1x2时 F(x)=0xf(t)dt=01tdt+1x(2-t)dt=2x 一 x2-1; 当 x2 时,F(X)=1

19、 期 F(x)=【试题解析】 考查利用概率密度计算分布函数的方法,是基本问题注意到 f(x)是分段函数,可根据 x 的不同取值范围直接利用公式 F(x)=-xf(t)dt 计算【知识模块】 概率论与数理统计23 【正确答案】 (1)由于 fX(x)= 设 X 的分布函数为 FX(x)当x0 时,分布函数【试题解析】 本题将离散型随机变量和连续型随机变量结合,考查离散型随机变量的概率分布随机变量 X 的分布函数直接利用分布函数计算公式计算, Y 为离散型随机变量,取值为一 1 和 1,而 X 的分布已知,从而可求出 Y 取一 1 和 1 的概率【知识模块】 概率论与数理统计24 【正确答案】 由

20、 xf(x)=(1 一 x)f(x),解得 f(x)=cxe-x,x0,再由 -+f(x)dx=1,得 c=1所以 又 PaX a+1=aa+1xe-xdx设 (a)=aa+1xe-xdx,(a)=(a+1)e -(a+1)-ae-a【试题解析】 本题没有直接给出概率密度表达式,因此先通过解其所满足的微分方程得到 f(x)的表达式,再根据求函数最大最小值的方法确定 a【知识模块】 概率论与数理统计25 【正确答案】 (1)X 可能取值范围为 一 1,1 当 x一 1 时,F(x)=PXx=P=0; 当 x1 时,F(x)=1; 当一 1x1 时,F(x)=Px=一 1+P一 1xx【试题解析】

21、 本题是按照考试大纲的要求,考查运用分布函数描绘随机变量的能力随机变量 X 属于非离散型随机变量,由已知条件 PX1=1PX=一 1-PX=1=1 一 ,且 X 在(一 1,1)内任一子区间上取值的条件概率与该子区间长度成正比,是条件均匀分布问题,根据该条件概率求出分布函数 F(x)=PXx【知识模块】 概率论与数理统计26 【正确答案】 由 f(x)dx=1,有 a-+f1(x)dx+b-+f2(x)dx=a+b=1 注意到 f1(x)是 N(0,)的密度函数 f2(x)是 E()的密度函数,从而 【试题解析】 同时考查两种常见分布f(x)作为概率密度必须满足 -+f(x)dx=1,而 F(

22、0)=PX0=-0f(x)dx,联立可得到 a,b 的值【知识模块】 概率论与数理统计27 【正确答案】 公式法 如果 x 的概率密度为 f(x),y=g(x) 严格单调且连续,反函数为 x=h(y),则 Y=g(X)的概率密度【试题解析】 由于 y=arctan x 是单调增加函数,可以利用公式,也可以利用分布函数法,即先求 Y 的分布函数,再求导数得概率密度【知识模块】 概率论与数理统计28 【正确答案】 Y=sin X 的取值范围为(0,1) 设 Y 的分布函数为 FY(y)=PYy=Psin Xy当 y0 时, FY(y)=0;当 0y1 时,如图 22,F Y(y)=P(0Xarcs

23、in y)(-arcsin yX)【试题解析】 在(0,)上, y=sinx 不是单调函数,利用分布函数法求解【知识模块】 概率论与数理统计29 【正确答案】 由已知条件, 当 x1 时,F(x)=0; 当 1x8 时,F(x)= 当 x8 时,F(x)=1 ;综合上述讨论可得Y 的取值范围为0,1,当 y0 时,F Y(y)=0;y1 时,FY(y)=1;0y1 时,F Y(y)=PYy=PF(x)y=P 一 1y=F(y+1)3)=y【试题解析】 本题考查随机变量函数 Y=F(X)的概率分布,由于没有直接给出函数的表达式,需要先确定 F(x)=-x(t)dt 的具体形式,再求 Y=F(X)

24、的分布函数【知识模块】 概率论与数理统计30 【正确答案】 (1)由 -+f(x)dx=1,有 =1,从而k=1 (2)可用图形分析,如图 2-3 所示,PXa= a+f(x)dx,表示以 f(x)为曲边的曲边梯形面积,可得 3a4 (3)Y=X的取值范围为0,+) 设 Y 的分布函数为 FY(y)=PYy 【知识模块】 概率论与数理统计31 【正确答案】 随机变量 Y=X2 的取值范围是0 ,+) 当 y0 时,F Y(y)=0; 当0y1 时,有 【试题解析】 由于 f(x)是分段函数,因此在求积分 -xf(t)dt 时,要正确划分积分区间,确定出随机变量 Y 的取值范围,先求出 FY(y)【知识模块】 概率论与数理统计32 【正确答案】 设 T=X+Y,则 Z=T2,由独立条件下正态分布的性质,T 服从N(0,2), 【试题解析】 解答本题的关键是独立条件下正态分布的性质因为 X 和 Y 相互独立,且都服从标准正态分布 N(0,1),可知 X+Y 服从 N(0,2),再利用分布函数法求解【知识模块】 概率论与数理统计33 【正确答案】 随机变量 Y 的取值范围为一 1,1设 y 的分布函数为 FY(y)=PYy当 y一 1 时,F Y(y)=PYy=0;【试题解析】 本题考查随机变量函数的分布函数,需根据分布函数的定义求解【知识模块】 概率论与数理统计

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1