1、124.1 一元二次方程一元二次方程是初中数学的主要内容之一,在初中数学中占有重要地位。它是在学习一元一次方程,二元一次方程,分式方程等基础之上学习的,同时也为学生进一步学习一元二次方程的解法和简单应用起到铺垫作用。本节课的学习内容意在让学生接触一种新的方程,掌握在解决实际问题时的一种新的工具,充分体会方程在解决实际问题时的重要性。【知识与能力目标】知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式( 0) 。02cbxaa【过程与方法目标】1正确理解一元二次方程意义,并能判断一个方程是否是一元二次方程;2知道一元二次方程的一般形式 和各项及系数,常数项。)0(2acbxa【情感态度
2、价值观目标】在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。【教学重点】正确理解一元二次方程意义,并能判断一个方程是否是一元二次方程。【教学难点】知道一元二次方程的一般形式 和各项及系数,常数项。)0(2acbxa课前准备2课件、多媒体、练习本。教学过程复习导入1你还记得什么叫方程?什么叫方程的解吗?2什么是一元一次方程?它的一般形式是怎样的? 一般形式: ax+b=0 (a0)3我们知道了利用一元一次方程可以解决生活中的一些实际问题,你还记得利用一元一次方程解决实际问题的步骤吗?1审;2
3、;设 3 列;4 解;5 验;6 答。师生活动:学生通过观察,口答问题,老师点评。讲授新课一元二次方程的定义及一般形式问题 1 列表填空:归纳:请观察下面两个方程并回答问题:x2+2x-1=0 x2-36x+35=0(1)它们是一元一次方程吗?3(2)与一元一次方程有何异同?(3)通过比较你能归纳出这类方程的特点吗? 能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。特点:1。等号两边都是整式;2只含有一个未知数;3未知数的最高次数是 2。(4)通过与一元一次方程的对比,你能给这类方程取个合理的名字吗?一般地,任何一个关于 x 的一元二次方程都可以化为 (a,b,c 为常数,02
4、cbxaa0)的形式,我们把它称为一元二次方程的一般形式。 为二次项系数, 为一次项系数,b为常数项。c推广探索通过以上习题的练习的情况,你认为在确定一元二次方程的各项系数及常数项的时候,需要注意哪些?(1)在确定一元二次方程的二次项系数、一次项系数和常数项时必须把方程化为一般形式才能进行。(2)二次项系数、一次项系数以及常数项都要连同它前面的符号。(3)二次项系数 a 0。 一元二次方程的根:问题 1 判断未知数的值 x= -1,x=0,x=2 是不是方程 x2-2=x 的根。能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。x= -1,x=2 是方程的根。 问题 2 判断下列
5、各题括号内未知数的值是不是方程的根:4x2-3x+2=0 (x1=1 x2=2 x3=3) x1=1 x2=2 是方程的根; x3=3 不是方程的根。问题 3 构造一个一元二次方程,要求:(1)常数项为零;(2)有一根为 2。x2-2x=0 (答案不唯一) 。典例精析 已知关于 x 的一元二次方程 x2+ax+a=0 的一个根是 3,求 a 的值。问题 1 某地为增加农民收入,需要调整农作物种植结构,计划 2017 年无公害蔬菜的产量比 2015 年翻一番,要实现这一目标,2016 年和 2017 年无公害蔬菜产量的年平均增长率应是多少?思考:1.根据以往的经验,你想用什么知识来解决这个实际问
6、题?2.如图:如果假设无公害蔬菜产量的年平均增长率是 x,2015 年的产量为 a,那么 2016 年无公害蔬菜产量为 , 2017 年无公害蔬菜产量为 。 3.你能根据题意,列出方程吗? 在一块宽 20m、长 32m 的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直) ,把矩形空地分成大小一样的六块,建成小花坛。如图要使花坛的总面积为570m2,问小路的宽应为多少?1.若设小路的宽是 xm,那么横向小路的面积是_m 2,纵向小路的面积是 m2,两者重叠的面积是 m 2。 52.由于花坛的总面积是 570m2。你能根据题意,列出方程吗? 还有其他的列法吗?试说明原因。当堂
7、练习下列哪些是一元二次方程 ?哪些不是?把下列关于 x 的一元二次方程化为一般式,写出它的二次项系数、一次项系数及常数项。(2) 538)1(2x)2()(3xx(3) 13已知关于 x 的一元二次方程 ax2+bx+c=0 (a0)一个根为 1,求 a+b+c 的值。 思考:若 a+b+c=0,你能通过观察,求出方程 ax2+bx+c=0 (a0)一个根吗? 拓广探索 若 a-b +c=0, 4a+2b +c=0 你能通过观察,求出方程 ax2+bx+c=0 (a0)一个根吗?课堂小结1一般地,任何一个关于 x 的一元二次方程都可以化为 ax2+bx+c=0 (a0)的形式,我们把(a,b,c 为常数, a0)称为一元二次方程的一般形式。2能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。3列一元二次方程的解题步骤:(1)审:审题要弄清已知量、未知量及问题中的等量关系;6(2)设:设未知数;(3)列:列方程,一般先找出能够表达应用题全部含义的相等关系,列代数式表示等量关系中的各个量,即列出方程。