【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc

上传人:fuellot230 文档编号:1394188 上传时间:2019-12-03 格式:DOC 页数:10 大小:133.50KB
下载 相关 举报
【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc_第1页
第1页 / 共10页
【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc_第2页
第2页 / 共10页
【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc_第3页
第3页 / 共10页
【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc_第4页
第4页 / 共10页
【考研类试卷】考研数学一(线性代数)-试卷46及答案解析.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、考研数学一(线性代数)-试卷 46 及答案解析(总分:84.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.若 1 , 2 , 3 线性相关, 2 , 3 , 4 线性无关,则( )(分数:2.00)A. 1 可由 2 , 3 线性表示B. 4 可由 1 , 2 , 3 线性表示C. 4 可由 1 , 3 线性表示D. 4 可由 1 , 2 线性表示3.设向量组 1 , 2 , 3 , 4 线性无关,则向量组( )(分数:2.00)A. 1 + 2 , 2 + 3 , 3 + 4 ,

2、4 + 1 线性无关B. 1 一 2 , 2 一 3 , 3 一 4 , 4 一 1 线性无关C. 1 + 2 , 2 + 3 , 3 + 4 , 4 一 1 线性无关D. 1 + 2 , 2 + 3 , 3 一 4 , 4 一 1 线性无关4.向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A.向量组 1 , 2 , m , 线性无关B.存在一组不全为零的常数 k 1 ,k 2 ,k m ,使得 k 1 1 +k 2 2 +k m m 0C.向量组 1 , 2 , m 的维数大于其个数D.向量组 1 , 2 , m 的任意一个部分向量组线性无关5.设向量组 1 ,

3、 2 , m 线性无关, 1 可由 1 , 2 , m 线性表示,但 2 不可由 1 , 2 , m 线性表示,则( )(分数:2.00)A. 1 , 2 , m-1 , 1 线性相关B. 1 , 2 , m-1 , 1 , 2 线性相关C. 1 , 2 , m , 1 + 2 线性相关D. 1 , 2 , m , 1 + 2 线性无关6.设 n 维列向量组 1 , 2 , m (mn)线性无关,则 n 维列向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表示B.向量组 1 , 2 , m 可由向量

4、组 1 , 2 , m 线性表示C.向量组 1 , 2 , m 与向量组 1 , 2 , m 等价D.矩阵 A=( 1 , 2 , m )与矩阵 B=( 1 , 2 , m )等价7.设 1 , 2 , 3 线性无关, 1 可由 1 , 2 , 3 线性表示, 2 不可由 1 , 2 , 3 线性表示,对任意的常数 k 有( )(分数:2.00)A. 1 , 2 , 3 ,k 1 + 2 线性无关B. 1 , 2 , 3 ,k 1 + 2 线性相关C. 1 , 2 , 3 , 1 +k 2 线性无关D. 1 , 2 , 3 , 1 +k 2 线性相关8.设 n 阶矩阵 A=( 1 , 2 ,

5、n ),B=( 1 , 2 , n ),AB=( 1 , 2 , n ),记向量组(I): 1 , 2 , n ;(): 1 , 2 , n ;(): 1 , 2 , n ,若向量组()线性相关,则( )(分数:2.00)A.(),()都线性相关B.()线性相关C.()线性相关D.(),()至少有一个线性相关9.设向量组(): 1 , 2 , s 的秩为 r 1 ,向量组(): 1 , 2 , s 的秩为 r 2 ,且向量组()可由向量组()线性表示,则( )(分数:2.00)A. 1 + 1 , 2 + 2 , s + s 的秩为 r 1 +r 2B.向量组 1 一 1 , 2 一 2 ,

6、s 一 s 的秩为 r 1 一 r 2C.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 +r 2D.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 110.向量组 1 , 2 , s 线性无关的充分条件是( )(分数:2.00)A. 1 , 2 , s 都不是零向量B. 1 , 2 , s 中任意两个向量不成比例C. 1 , 2 , s 中任一向量都不可由其余向量线性表示D. 1 , 2 , s 中有一个部分向量组线性无关11.设 A 为 n 阶矩阵,且A=0,则 A( )(分数:2.00)A.必有一列元素全为零B.必有两行元素对应成比例C.必有一列是其余

7、列向量的线性组合D.任一列都是其余列向量的线性组合二、填空题(总题数:4,分数:8.00)12.设 A=( 1 , 2 , 3 , 4 )为 4 阶方阵,且 AX=0 的通解为 X=k(1,1,2,一 3) T ,则 2 由 1 , 3 , 4 表示的表达式为 1(分数:2.00)填空项 1:_13.设向量组 1 , 2 , 3 线性无关,且 1 +a 2 +4 3 ,2 1 + 2 一 3 , 2 + 3 线性相关,则 a= 1.(分数:2.00)填空项 1:_14. (分数:2.00)填空项 1:_15. (分数:2.00)填空项 1:_三、解答题(总题数:27,分数:54.00)16.解

8、答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_17.设 A,B 为 n 阶矩阵,且 A 2 =A,B 2 =B,(A+B) 2 =A+B证明:AB=0(分数:2.00)_18. (分数:2.00)_19. (分数:2.00)_20.设 A,B 满足 A * BA=2BA 一 8E,且 (分数:2.00)_21.设 AX=A+2X,其中 (分数:2.00)_22. (分数:2.00)_23.设 n 阶矩阵 A 满足 A 2 +2A 一 3E=0求:(1)(A+2E) -1 ;(2)(A+4E) -1 (分数:2.00)_24.设 A 为 n 阶矩阵,且 A k =0,求(EA)

9、 -1 (分数:2.00)_25. (分数:2.00)_26.设 A 为 n 阶可逆矩阵,A 2 =AE证明:A=A * (分数:2.00)_27.设 A 为 n 阶矩阵,且 A 2 一 2A 一 8E=0证明:r(4EA)+r(2e+A)=N(分数:2.00)_28.证明:若矩阵 A 可逆,则其逆矩阵必然唯一(分数:2.00)_29.设 A 是 mn 阶矩阵,若 A T A=0,证明:A=0(分数:2.00)_30.设向量组 1 , 2 , 3 线性无关,证明: 1 + 2 + 3 , 1 +2 2 +3 3 , 1 +4 2 +9 3 线性无关(分数:2.00)_31.设 1 ,a m ,

10、 为 m+1 维向量,= 1 + m (m1)证明:若 1 , m 线性无关,则 一 1 , 一 m 线性无关(分数:2.00)_32.设 1 , 2 , n (n2)线性无关,证明:当且仅当 n 为奇数时, 1 + 2 , 2 + 3 , n + 1 线性无关(分数:2.00)_33.设 A 为 n 阶矩阵, 1 , 2 , 3 为 n 维列向量,其中 1 0,且 A 1 = 1 ,A 2 = 1 + 2 ,A 3 = 2 + 3 ,证明: 1 , 2 , 3 线性无关(分数:2.00)_34.证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关(分数:2.00)_35.n

11、维列向量组 1 , n-1 线性无关,且与非零向量 正交证明: 1 , n-1 , 线性无关(分数:2.00)_36.设向量组 1 , n 为两两正交的非零向量组,证明: 1 , n 线性无关,举例说明逆命题不成立。(分数:2.00)_37.设 A 为 nm 矩阵,B 为 mn 矩阵(mn),且 AB=E证明:B 的列向量组线性无关(分数:2.00)_38.设 1 , 2 , m , 1 , 2 , n 线性无关,而向量组 1 , 2 , m , 线性相关证明:向量 可由向量组 1 , 2 , m , 1 , 2 , n 线性表示(分数:2.00)_39.设向量组 (分数:2.00)_40.设

12、 1 , 2 , n 为 n 个线性无关的 n 维向量,且与向量 正交证明:向量 为零向量(分数:2.00)_41. (分数:2.00)_42.设三维向量空间 R 3 中的向量 在基 1 =(1,一 2,1) T , 2 =(0,1,1) T , 3 =(3,2,1) T 下的坐标为(x 1 ,x 2 ,x 3 ) T ,在基肪,尼,届下的坐标为(y 1 ,y 2 ,y 3 ) T ,且 y 1 =x 1 -x 2 -x 3 ,y 2 =-x 1 +x 2 ,y 3 =x 1 +2x 3 ,求从基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵(分数:2.00)_考研数学一(线性代数

13、)-试卷 46 答案解析(总分:84.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.若 1 , 2 , 3 线性相关, 2 , 3 , 4 线性无关,则( )(分数:2.00)A. 1 可由 2 , 3 线性表示 B. 4 可由 1 , 2 , 3 线性表示C. 4 可由 1 , 3 线性表示D. 4 可由 1 , 2 线性表示解析:解析:因为 2 , 3 , 4 线性无关,所以 2 , 3 线性无关,又因为 1 , 2 , 3 线性相关,所以 1 可由 2 , 3 线性表示,

14、选(A)3.设向量组 1 , 2 , 3 , 4 线性无关,则向量组( )(分数:2.00)A. 1 + 2 , 2 + 3 , 3 + 4 , 4 + 1 线性无关B. 1 一 2 , 2 一 3 , 3 一 4 , 4 一 1 线性无关C. 1 + 2 , 2 + 3 , 3 + 4 , 4 一 1 线性无关 D. 1 + 2 , 2 + 3 , 3 一 4 , 4 一 1 线性无关解析:解析:因为一( 1 + 2 )+( 2 + 3 )一( 3 + 4 )+( 4 + 1 )=0, 所以 1 + 2 , 2 + 3 , 3 + 4 , 4 + 1 线性相关; 因为( 1 一 2 )+(

15、2 一 3 )+( 3 一 4 )+( 4 一 1 )=0, 所以 1 一 2 , 2 一 3 , 3 一 4 , 4 一 1 线性相关; 因为( 1 + 2 )一( 2 + 3 )+( 3 一 4 )+( 4 一 1 )=0, 所以 1 + 2 , 2 + 3 , 3 一 4 , 4 一 1 线性相关,容易通过证明向量组线性无关的定义法得 1 + 2 , 2 + 3 , 3 + 4 , 4 一 1 线性无关,选(C)4.向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A.向量组 1 , 2 , m , 线性无关B.存在一组不全为零的常数 k 1 ,k 2 ,k m

16、 ,使得 k 1 1 +k 2 2 +k m m 0C.向量组 1 , 2 , m 的维数大于其个数D.向量组 1 , 2 , m 的任意一个部分向量组线性无关 解析:解析:(A)不对,因为 1 , 2 , m , 线性无关可以保证 1 , 2 , m 线性无关,但 1 , 2 , m 线性无关不能保证 1 , 2 , m , 线性无关; (B)不对,因为 1 , 2 , m 线性无关可以保证对任意一组非零常数 k 1 ,k 2 ,k m ,有 k 1 1 +k 2 2 +k m m 0,但存在一组不全为零的常数 k 1 ,k 2 ,k m 使得 k 1 1 +k 2 2 +k m m 0 不

17、能保证 1 , 2 , m 线性无关; (C)不对,向量组 1 , 2 , m 线性无关不能得到其维数大于其个数,如 , 2 = 5.设向量组 1 , 2 , m 线性无关, 1 可由 1 , 2 , m 线性表示,但 2 不可由 1 , 2 , m 线性表示,则( )(分数:2.00)A. 1 , 2 , m-1 , 1 线性相关B. 1 , 2 , m-1 , 1 , 2 线性相关C. 1 , 2 , m , 1 + 2 线性相关D. 1 , 2 , m , 1 + 2 线性无关 解析:解析:(A)不对,因为 1 可由向量组 1 , 2 , m 线性表示,但不一定能被 1 , 2 , m-

18、1 线性表示,所以 1 , 2 , m-1 , 1 不一定线性相关; (B)不对,因为 1 , 2 , m-1 , 1 不一定线性相关, 2 不一定可由 1 , 2 , m-1 , 1 线性表示,所以 1 , 2 , m-1 , 1 , 2 不一定线性相关; (C)不对,因为 2 不可由 1 , 2 , m 线性表示,而 1 可由 1 , 2 , m 线性表示,所以 1 + 2 不可由 1 , 2 , m 线性表示,于是 1 , 2 , m , 1 + 2 线性无关,选(D)6.设 n 维列向量组 1 , 2 , m (mn)线性无关,则 n 维列向量组 1 , 2 , m 线性无关的充分必要

19、条件是( )(分数:2.00)A.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表示B.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表示C.向量组 1 , 2 , m 与向量组 1 , 2 , m 等价D.矩阵 A=( 1 , 2 , m )与矩阵 B=( 1 , 2 , m )等价 解析:解析:因为 1 , 2 , m 线性无关,所以向量组 1 , 2 , m 的秩为 m,向量组 1 , 2 , m 线性无关的充分必要条件是其秩为 m,所以选(D)7.设 1 , 2 , 3 线性无关, 1 可由 1 , 2 , 3 线性表示, 2 不可由 1 , 2 ,

20、 3 线性表示,对任意的常数 k 有( )(分数:2.00)A. 1 , 2 , 3 ,k 1 + 2 线性无关 B. 1 , 2 , 3 ,k 1 + 2 线性相关C. 1 , 2 , 3 , 1 +k 2 线性无关D. 1 , 2 , 3 , 1 +k 2 线性相关解析:解析:因为 1 可由 1 , 2 , 3 线性表示, 2 不可由 1 , 2 , 3 线性表示,所以 k 1 + 2 一定不可以由向量组 1 , 2 , 3 线性表示,所以 1 , 2 , 3 ,k 1 + 2 线性无关,选(A)8.设 n 阶矩阵 A=( 1 , 2 , n ),B=( 1 , 2 , n ),AB=(

21、1 , 2 , n ),记向量组(I): 1 , 2 , n ;(): 1 , 2 , n ;(): 1 , 2 , n ,若向量组()线性相关,则( )(分数:2.00)A.(),()都线性相关B.()线性相关C.()线性相关D.(),()至少有一个线性相关 解析:解析:若 1 , 2 , n 线性无关, 1 , 2 , n 线性无关,则 r(A)=n,r(B)=n,于是 r(AB)=n因为 1 , 2 , n 线性相关,所以 r(AB)=r( 1 , 2 , n )n,故 1 , 2 , n 与 1 , 2 , n 至少有一个线性相关,选(D)9.设向量组(): 1 , 2 , s 的秩为

22、 r 1 ,向量组(): 1 , 2 , s 的秩为 r 2 ,且向量组()可由向量组()线性表示,则( )(分数:2.00)A. 1 + 1 , 2 + 2 , s + s 的秩为 r 1 +r 2B.向量组 1 一 1 , 2 一 2 , s 一 s 的秩为 r 1 一 r 2C.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 +r 2D.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 解析:解析:因为向量组 1 , 2 , s 可由向量组 1 , 2 , s 线性表示,所以向量组 1 , 2 , s ,与向量组 1 , 2 , s , 1 , 2

23、, s 等价,选(D)10.向量组 1 , 2 , s 线性无关的充分条件是( )(分数:2.00)A. 1 , 2 , s 都不是零向量B. 1 , 2 , s 中任意两个向量不成比例C. 1 , 2 , s 中任一向量都不可由其余向量线性表示 D. 1 , 2 , s 中有一个部分向量组线性无关解析:解析:若向量组 1 , 2 , s 线性无关,则其中任一向量都不可由其余向量线性表示,反之,若 1 , 2 , s 中任一向量都不可由其余向量线性表示,则 1 , 2 , s 一定线性无关,因为若 1 , 2 , s 线性相关,则其中至少有一个向量可由其余向量线性表示,故选(C)11.设 A

24、为 n 阶矩阵,且A=0,则 A( )(分数:2.00)A.必有一列元素全为零B.必有两行元素对应成比例C.必有一列是其余列向量的线性组合 D.任一列都是其余列向量的线性组合解析:解析:因为A=0,所以 r(A)1)证明:若 1 , m 线性无关,则 一 1 , 一 m 线性无关(分数:2.00)_正确答案:(正确答案: )解析:32.设 1 , 2 , n (n2)线性无关,证明:当且仅当 n 为奇数时, 1 + 2 , 2 + 3 , n + 1 线性无关(分数:2.00)_正确答案:(正确答案:设有 x 1 ,x 2 ,x n ,使 x 1 ( 1 + 2 )+x 2 ( 2 + 3 )

25、+x n ( n + 1 )=0,即 (x 1 +x n ) 1 +(x 1 +x 2 ) 2 +(x n-1 +x n ) n =0, )解析:33.设 A 为 n 阶矩阵, 1 , 2 , 3 为 n 维列向量,其中 1 0,且 A 1 = 1 ,A 2 = 1 + 2 ,A 3 = 2 + 3 ,证明: 1 , 2 , 3 线性无关(分数:2.00)_正确答案:(正确答案:由 A 1 = 1 得(AE) 1 =0; 由 A 2 = 1 + 2 得(AE) 2 = 1 ;由 A 3 = 2 + 3 得(AE) 3 = 2 , 令 k 1 1 +k 2 2 +k 3 3 =0, (1) (1

26、)两边左乘 AE 得 k 2 1 +k 3 2 =0, (2) (2)两边左乘 AE 得 k 3 1 =0,因为 1 0,所以 k 3 =0,代入(2)、(1)得 k 1 =0,k 2 =0,故 1 , 2 , 3 线性无关)解析:34.证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关(分数:2.00)_正确答案:(正确答案:设 1 , n 为一个向量组,且 1 , r ,(rn)线性相关,则存在不全为零的常数 k 1 ,k r ,使得 k 1 1 +k r r =0,于是 k 1 1 +k r r +0 r+1 +0 n =0,因为 k 1 ,0,0 不全为零,所以 1

27、, n 线性相关)解析:35.n 维列向量组 1 , n-1 线性无关,且与非零向量 正交证明: 1 , n-1 , 线性无关(分数:2.00)_正确答案:(正确答案:令 k 0 +k 1 1 +k n-1 n-1 =0,由 1 , n-1 与非零向量 正交及(,k 0 +k 1 1 +k n-1 n-1 =0 得 k 0 (,)=0,因为 为非零向量,所以(,)一 2 0,于是 k 0 =0,故 k 1 1 +k n-1 n-1 =0,由 1 , n-1 线性无关得 k 1 =k n-1 =0,于是 1 , n-1 , 线性无关)解析:36.设向量组 1 , n 为两两正交的非零向量组,证明

28、: 1 , n 线性无关,举例说明逆命题不成立。(分数:2.00)_正确答案:(正确答案:令 k 1 1 +k n n =0,由 1 , n 两两正交及( 1 ,k 1 1 +k n n )=0,得 k 1 ( 1 , 1 )=0,而( 1 , 1 )= 1 2 0,于是 k 1 =0,同理可证 k 2 =k n =0,故 1 , n 线性无关令 )解析:37.设 A 为 nm 矩阵,B 为 mn 矩阵(mn),且 AB=E证明:B 的列向量组线性无关(分数:2.00)_正确答案:(正确答案:首先 r(B)minm,n=n,由 AB=E 得 r(AB)=n,而 r(AB)r(B),所以 r(B

29、)n,从而 r(B)=n,于是 B 的列向量组线性无关)解析:38.设 1 , 2 , m , 1 , 2 , n 线性无关,而向量组 1 , 2 , m , 线性相关证明:向量 可由向量组 1 , 2 , m , 1 , 2 , n 线性表示(分数:2.00)_正确答案:(正确答案:因为向量组 1 , 2 , m , 1 , 2 , n 线性无关,所以向量组 1 , 2 , m 也线性无关,又向量组 1 , 2 , m , 线性相关,所以向量 可由向量组 1 , 2 , m 线性表示,从而 可由向量组 1 , 2 , m , 1 , 2 , n 线性表示)解析:39.设向量组 (分数:2.0

30、0)_正确答案:(正确答案:向量组 1 , 2 , 3 线性相关的充分必要条件是 1 , 2 , 3 =0, )解析:40.设 1 , 2 , n 为 n 个线性无关的 n 维向量,且与向量 正交证明:向量 为零向量(分数:2.00)_正确答案:(正确答案: )解析:41. (分数:2.00)_正确答案:(正确答案: )解析:42.设三维向量空间 R 3 中的向量 在基 1 =(1,一 2,1) T , 2 =(0,1,1) T , 3 =(3,2,1) T 下的坐标为(x 1 ,x 2 ,x 3 ) T ,在基肪,尼,届下的坐标为(y 1 ,y 2 ,y 3 ) T ,且 y 1 =x 1 -x 2 -x 3 ,y 2 =-x 1 +x 2 ,y 3 =x 1 +2x 3 ,求从基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵(分数:2.00)_正确答案:(正确答案:因为 =( 1 , 2 , 3 )X,=( 1 , 2 , 3 )Y ,由 y 1 =x 1 -x 2 一 x 3 ,y 2 =一 x 1 +x 2 ,y 3 =x 1 +2x 3 )解析:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1