Ch 2.2- Separable Equations.ppt

上传人:eveningprove235 文档编号:379441 上传时间:2018-10-09 格式:PPT 页数:8 大小:411.50KB
下载 相关 举报
Ch 2.2- Separable Equations.ppt_第1页
第1页 / 共8页
Ch 2.2- Separable Equations.ppt_第2页
第2页 / 共8页
Ch 2.2- Separable Equations.ppt_第3页
第3页 / 共8页
Ch 2.2- Separable Equations.ppt_第4页
第4页 / 共8页
Ch 2.2- Separable Equations.ppt_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Ch 2.2: Separable Equations,In this section we examine a subclass of linear and nonlinear first order equations. Consider the first order equationWe can rewrite this in the formFor example, let M(x,y) = - f (x,y) and N (x,y) = 1. There may be other ways as well. In differential form, If M is a funct

2、ion of x only and N is a function of y only, then In this case, the equation is called separable.,http:/ &bcsId=2026&itemId=047143339X&resourceId=4140,Example 1: Solving a Separable Equation,Solve the following first order nonlinear equation:Separating variables, and using calculus, we obtain The eq

3、uation above defines the solution y implicitly. A graph showing the direction field and implicit plots of several integral curves for the differential equation is given above.,Example 2: Implicit and Explicit Solutions (1 of 4),Solve the following first order nonlinear equation:Separating variables

4、and using calculus, we obtain The equation above defines the solution y implicitly. An explicit expression for the solution can be found in this case:,Example 2: Initial Value Problem (2 of 4),Suppose we seek a solution satisfying y(0) = -1. Using the implicit expression of y, we obtainThus the impl

5、icit equation defining y is Using explicit expression of y, It follows that,Example 2: Initial Condition y(0) = 3 (3 of 4),Note that if initial condition is y(0) = 3, then we choose the positive sign, instead of negative sign, on square root term:,Example 2: Domain (4 of 4),Thus the solutions to the

6、 initial value problem are given byFrom explicit representation of y, it follows thatand hence domain of y is (-2, ). Note x = -2 yields y = 1, which makes denominator of dy/dx zero (vertical tangent). Conversely, domain of y can be estimated by locating vertical tangents on graph (useful for implic

7、itly defined solutions).,Example 3: Implicit Solution of Initial Value Problem (1 of 2),Consider the following initial value problem:Separating variables and using calculus, we obtain Using the initial condition, it follows that,Example 3: Graph of Solutions (2 of 2),ThusThe graph of this solution (black), along with the graphs of the direction field and several integral curves (blue) for this differential equation, is given below.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 大学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1