1、Oktober 2014DEUTSCHE NORM DIN-Normenausschuss Luft- und Raumfahrt (NL)Preisgruppe 13DIN Deutsches Institut fr Normung e. V. Jede Art der Vervielfltigung, auch auszugsweise, nur mit Genehmigung des DIN Deutsches Institut fr Normung e. V., Berlin, gestattet.ICS 49.140!%:K(“2234005www.din.deDDIN EN 166
2、03-32-10Raumfahrttechnik Strukturelle Sicherheitsfaktoren fr Raumflughardware;Englische Fassung EN 16603-32-10:2014Space engineering Structural factors of safety for spaceflight hardware;English version EN 16603-32-10:2014Ingnierie spatiale Facteurs de scurit pour les structure spatiales;Version ang
3、laise EN 16603-32-10:2014Alleinverkauf der Normen durch Beuth Verlag GmbH, 10772 Berlin www.beuth.deGesamtumfang 27 SeitenDIN EN 16603-32-10:2014-10 2 Nationales Vorwort Dieses Dokument (EN 16603-32-10:2014) wurde vom Technischen Komitee CEN/CLC/TC 5 Raumfahrt“ erarbeitet, dessen Sekretariat vom DIN
4、 (Deutschland) gehalten wird. Das zustndige deutsche Normungsgremium ist der Arbeitsausschuss NA 131-10-01AA Interoperabilitt von Informations-, Kommunikations- und Navigationssystemen“ im DIN-Normenausschuss Luft- und Raumfahrt (NL). Dieses Dokument wurde speziell zur Behandlung von Raumfahrtsystem
5、en erarbeitet und hat daher Vorrang vor jeglicher Europischer Norm, da es denselben Anwendungsbereich hat, jedoch ber einen greren Geltungsbereich (z. B. Luft- und Raumfahrt) verfgt. DIN EN 16603-32-10:2014-10 3 Nationaler Anhang NA (informativ) Begriffe und Abkrzungen 3 Begriffe und Abkrzungen 3.1
6、Begriffe Fr die Anwendung dieses Dokuments gelten die Begriffe nach ECSS-ST-00-01, ECSS-E-ST-10-02, ECSS-ST-E-10-03 und ECSS-E-ST-32. 3.2 Fr diese Norm spezifische Begriffe 3.2.1 lokaler Bemessungsfaktor KLDFaktor, der lokale Unregelmigkeiten bercksichtigt und zusammen mit FOSU oder FOSY angewendet
7、wird 3.2.2 Reservenpolitik-Faktor KMPfr Trgerrakten spezifischer Faktor, der die vom Projekt festgelegte Reservenpolitik einschliet 3.2.3 Modellfaktor KMFaktor, der die Reprsentativitt von mathematischen Modellen bercksichtigt 3.2.4 Projektfaktor KPFaktor, der zu Projektbeginn die “Reife“ der Konstr
8、uktion und deren mgliche Entwicklung sowie programmatische Reserven bercksichtigt, die gegebenenfalls Projektunsicherheiten oder Wachstums-potenziale abdecken 3.2.5 Prototyp-Test Test, der an einem gesonderten fr einen Strukturtest gefertigten Objekt unter flughnlichen Bedingungen durchgefhrt wird 3
9、.2.6 Erstflug-Test Test, der an Flug-Hardware durchgefhrt wird 3.2.7 Testfaktoren KA und KQ Faktoren, die verwendet werden, um jeweils die Lasten fr den Abnahmetest und den Qualifikationstest festzulegen DIN EN 16603-32-10:2014-10 4 3.2.8 Sicherheitsfaktor fr Bemessungsbruchlast FOSU Multiplikator,
10、der auf die Bemessungsgrenzlast angewendet wird, um die Bemessungsbruchlast zu berechnen 3.2.9 Sicherheitsfaktor fr Bemessungsflielast FOSY Multiplikator, der auf die Bemessungsgrenzlast angewendet wird, um die Bemessungsflielast zu berechnen 3.3 Abkrzungen Fr die Anwendung dieser Norm gelten die Ab
11、krzungen nach ECSS-S-ST-00-01 und die folgenden Abkrzungen. Abkrzung Bedeutung AL Last fr den Abnahmetest (en: acceptance test load) DLL Bemessungsgrenzlast (en: design limit load) DUL Bemessungsbruchlast (en: design ultimate load) DYL Bemessungsflielast (en: design yield load) FOS Sicherheitsfaktor
12、 (en: factor of safety) FOSU Sicherheitsfaktor fr Bemessungsbruchlast (en: ultimate design factor of safety) FOSY Sicherheitsfaktor fr Bemessungsflielast (en: yield design factor of safety) FRP Faserverstrkter Kunststoff (en: fibre reinforced plastics) GSE Bodengerte (en: ground support equipment) K
13、A Faktor fr den Abnahmetest (en: acceptance test factor) KQ Faktor fr den Qualifikationstest (en: qualification test factor) LCDA Mit der Trgerrakete verbundene dynamische Analyse (en: launch vehicle coupled dynamic analysis) LL Grenzlast (en: limit load) N/A Nicht anwendbar (en: not applicable) QL
14、Last fr den Qualifikationstest (en: qualification test load) S/C Raumfahrzeug (en: spacecraft) EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 16603-32-10 August 2014 ICS 49.140 English version Space engineering - Structural factors of safety for spaceflight hardware Ingnierie spatiale - Facteu
15、rs de scurit pour les structure spatiales Raumfahrttechnik - Strukturelle Sicherheitsfaktoren fr Raumflughardware This European Standard was approved by CEN on 10 February 2014. CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for g
16、iving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member. This European Standard exist
17、s in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN and CENELEC membe
18、rs are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Ma
19、lta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2014 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN nationa
20、l Members and for CENELEC Members. Ref. No. EN 16603-32-10:2014 EEN 16603-32-10:2014 (E) 2 Table of contents Foreword 4 1 Scope . 5 2 Normative references . 7 3 Terms, definitions and abbreviated terms 8 3.1 Terms and definitions . 8 3.2 Terms specific to the present standard . 8 3.3 Abbreviated ter
21、ms. 9 4 Requirements 10 4.1 Applicability of structural factors of safety . 10 4.1.1 Overview . 10 4.1.2 Applicability . 10 4.1.3 General . 10 4.1.4 Design factor for loads 10 4.1.5 Additional factors for design 12 4.2 Loads and factors relationship 13 4.2.1 General . 13 4.2.2 Specific requirements
22、for launch vehicles . 15 4.3 Factors values 16 4.3.1 Test factors . 16 4.3.2 Factors of safety . 17 Annex A (informative) Qualification test factor for launch vehicles . 21 Bibliography . 23 Figures Figure 4-1: Logic for Factors of Safety application 14 Figure 4-2: Analysis tree . 15 DIN EN 16603-32
23、-10:2014-10 EN 16603-32-10:2014 (E) 3 Tables Table 4-1: Relationship among (structural) factors of safety, design factors and additional factors 14 Table 4-2: Test factor values 16 Table 4-3: Factors of safety for metallic, FRP, sandwich, glass and ceramic structural parts . 18 Table 4-4: Factors of
24、 safety for joints, inserts and connections . 19 Table 4-5: Factors of safety for buckling . 20 Table 4-6: Factors of safety for pressurized hardware 20 DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 4 Foreword This document (EN 16603-32-10:2014) has been prepared by Technical Committee CEN/CLC/
25、TC 5 “Space”, the secretariat of which is held by DIN. This standard (EN 16603-32-10:2014) originates from ECSS-E-ST-32-10C Rev.1. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2015, an
26、d conflicting national standards shall be withdrawn at the latest by February 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. Th
27、is document has been developed to cover specifically space systems and has therefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g. : aerospace). According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following co
28、untries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
29、Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 5 1 Scope The purpose of this Standard is to define the Factors Of Safety (FOS), Design Factor and additional factors to be used for the dimens
30、ioning and design verification of spaceflight hardware including qualification and acceptance tests. This standard is not self standing and is used in conjunction with the ECSS-E-ST-32, ECSS-E-ST-32-02 and ECSS-E-ST-33-01 documents. Following assumptions are made in the document: that recognized met
31、hodologies are used for the determination of the limit loads, including their scatter, that are applied to the hardware and for the stress analyses; that the structural and mechanical system design is amenable to engineering analyses by current state-of-the-art methods and is conforming to standard
32、aerospace industry practices. Factors of safety are defined to cover chosen load level probability, assumed uncertainty in mechanical properties and manufacturing but not a lack of engineering effort. The choice of a factor of safety for a program is directly linked to the rationale retained for des
33、igning, dimensioning and testing within the program. Therefore, as the development logic and the associated reliability objectives are different for: unmanned scientific or commercial satellite, expendable launch vehicles, man-rated spacecraft, and any other unmanned space vehicle (e.g. transfer veh
34、icle, planetary probe) specific values are presented for each of them. Factors of safety for re-usable launch vehicles and man-rated commercial spacecraft are not addressed in this document. For all of these space products, factors of safety are defined hereafter in the document whatever the adopted
35、 qualification logic: proto-flight or prototype model. For pressurized hardware, factors of safety for all loads except internal pressure loads are defined in this standard. Concerning the internal pressure, the factors DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 6 of safety for pressurised h
36、ardware can be found in ECSS-E-ST-32-02. For loads combination refer to ECSS-E-ST-32-02. For mechanisms, specific factors of safety associated with yield and ultimate of metallic materials, cable rupture factors of safety, stops/shaft shoulders/recess yield factors of safety and limits for peak Hert
37、zian contact stress are specified in ECSS-E-ST-33-01. Alternate approach The factors of safety specified hereafter are applied using a deterministic approach i.e. as generally applied in the Space Industry to achieve the structures standard reliability objectives. Structural safety based on a probab
38、ilistic analysis could be an alternate approach but it has to be demonstrated this process achieves the reliability objective specified to the structure. The procedure is approved by the customer. This standard may be tailored for the specific characteristics and constraints of a space project in co
39、nformance with ECSS-S-ST-00. DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 7 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revisio
40、n of any of these publications, do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the more recent editions of the normative documents indicated below. For undated references, the latest edition of the publication referr
41、ed to applies. EN reference Reference in text Title EN 16601-00-01 ECSS-S-ST-00-01 ECSS system Glossary of terms EN 16603-10-02 ECSS-E-ST-10-02 Space engineering Verification EN 16603-10-03 ECSS-E-ST-10-03 Space engineering Testing EN 16603-32 ECSS-E-ST-32 Space engineering Structural general requir
42、ements EN 16603-32-02 ECSS-E-ST-32-02 Space engineering Structural design and verification of pressurized hardware DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 8 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions For the purpose of this Standard, the terms and definitions fro
43、m ECSS-S-ST-00-01, ECSS-E-ST-10-02, ECSS-ST-E-10-03, and ECSS-E-ST-32 apply. 3.2 Terms specific to the present standard 3.2.1 local design factor (KLD) factor used to take into account local discontinuities and applied in series with FOSU or FOSY 3.2.2 margin policy factor (KMP) factor, specific to
44、launch vehicles, which includes the margin policy defined by the project 3.2.3 model factor (KM) factor which takes into account the representativity of mathematical models 3.2.4 project factor (KP) factor which takes into account at the beginning of the project the maturity of the design and its po
45、ssible evolution and programmatic margins which cover project uncertainties or some growth potential when required 3.2.5 prototype test test performed on a separate flight-like structural test article 3.2.6 protoflight test test performed on a flight hardware 3.2.7 test factors (KA and KQ) factors u
46、sed to define respectively the acceptance and the qualification test loads 3.2.8 ultimate design factor of safety (FOSU) multiplying factor applied to the design limit load in order to calculate the design ultimate load DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 9 3.2.9 yield design factor o
47、f safety (FOSY) multiplying factor applied to the design limit load in order to calculate the design yield load 3.3 Abbreviated terms For the purpose of this standard, the abbreviated terms from ECSS-S-ST-00-01 and the following apply. Abbreviation Meaning AL acceptance test load DLL design limit lo
48、ad DUL design ultimate load DYL design yield load FOS factor of safety FOSU ultimate design factor of safety FOSY yield design factor of safety FRP fibre reinforced plastics GSE ground support equipment KA acceptance test factor KQ qualification test factor LCDA launch vehicle coupled dynamic analys
49、is LL limit load N/A not applicable QL qualification test load S/C spacecraft DIN EN 16603-32-10:2014-10 EN 16603-32-10:2014 (E) 10 4 Requirements 4.1 Applicability of structural factors of safety 4.1.1 Overview The purpose of the factors of safety defined in this Standard is to guarantee an adequate level of mechanical reliability for spaceflight hardware. 4.1.2 Applicability a. The factors specified in clauses 4.1.4, 4.1.5 and 4.3 shall be applied for: 1. Structural elements of satellites including