八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx

上传人:roleaisle130 文档编号:1098175 上传时间:2019-04-16 格式:DOCX 页数:5 大小:3.50MB
下载 相关 举报
八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx_第1页
第1页 / 共5页
八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx_第2页
第2页 / 共5页
八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx_第3页
第3页 / 共5页
八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx_第4页
第4页 / 共5页
八年级数学下册《第5章特殊平行四边形》阶段性测试(十)(新版)浙教版.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1阶段性测试(十)考查范围:第 5 章 5.15.3 总分:100 分一、选择题(每小题 5 分,共 30 分)1下列四边形中,对角线互相垂直平分的是( D )A平行四边形、菱形 B矩形、菱形C矩形、正方形 D菱形、正方形2如图所示,正方形 ABCD 的对角线 AC, BD 相交于点 O, OA3,则此正方形的面积为( C )A3 B12 C18 D362第 2 题图 第 3 题图3如图所示,已知面积为 1 的正方形 ABCD 的对角线相交于点 O,过点 O 任意作一条直线分别交 AD, BC 于点 E, F,则阴影部分的面积是( C )A1B0.5C0.25D无法确定4如图所示,在菱形 AB

2、CD 中,对角线 AC, BD 相交于点 O,作 OE AB,交 BC 于点 E,则OE 的长一定等于( A )A BEB AOC ADD OB第 4 题图 第 5 题图5如图,四边形 ABCD 是正方形, BE EF, DF EF, BE2.5dm, DF4dm,那么 EF 的长为( A )A6.5dmB6dmC5.5dmD4dm6如图所示,在 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形 AEFG,若 BAE40, CEF15,则 D 的度数是( A )A65B55C70D75二、填空题(每小题 5 分,共 20 分)7如图,在四边形 ABCD 中,对角线 AC, BD

3、交于点 O, OA OC, OB OD,添加一个条件使四边形 ABCD 是菱形,那么所添加的条件可以是_如 AC BD_(写出一个即可)第 7 题图 第 8 题图8如图所示,正方形 ABCO 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线,若 D60, BC2,则点 D 的坐标是 (2 ,1) 39如图所示,正方形 ABCD 的面积为 5,正方形 BEFG 的面积为 4,那么 GCE 的面积是_2 2_5第 9 题图 第 10 题图10在 ABC 中,点 D, E, F 分别在 BC, AB, CA 上,且 DE CA, DF BA,则下列三种说法:如果 BA

4、C90,那么四边形 AEDF 是矩形如果 AD 平分 BAC,那么四边形 AEDF 是菱形如果 AD BC 且 AB AC,那么四边形 AEDF 是菱形其中正确的有_三、解答题(共 50 分)11(10 分)已知,如图,四边形 ABCD 是正方形, E, F 分别是 AB 和 AD 延长线上的点,且BE DF.(1)求证: CE CF;(2)求 CEF 的度数解:(1)证明:四边形 ABCD 是正方形, DC BC, B ADC90, CDF90 B.在 CDF 和 CBE 中, DC BC, CDF B 90,DF BE, ) CDF CBE(ASA) CE CF.(2) CDF CBE,

5、DCF BCE. ECF DCB90. CF CE, CEF CFE45.12(10 分)如图,在 ABC 中, BAC 的平分线交 BC 于点 D, E 是 AB 上一点,且AE AC, EF BC 交 AD 于点 F.求证:四边形 CDEF 是菱形证明:连结 CE,交 AD 于点 O. AC AE, ACE 为等腰三角形 AO 平分 CAE, AO CE,且 OC OE.3 EF CD, DCE FEC.又 DOC FOE, DOC FOE(ASA) OD OF.即 CE 与 DF 互相垂直且平分四边形 CDEF 是菱形13(10 分)如图,在矩形 ABCD 中, M, N 分别是边 AD

6、, BC 的中点, E, F 分别是线段BM, CM 的中点(1)求证: ABM DCM;(2)填空:当 AB AD_时,四边形 MENF 是正方形,并说明理由解:(1)由 SAS 可证(2)12.理由: AB AD12, AB AD. AM AD, AB AM, ABM AMB. A90,12 12 AMB45. ABM DCM, BM CM, DMC AMB45, BMC90. E, F, N 分别是 BM, CM, BC 的中点, EN CM, FN BM, EM MF,四边形 MENF 是菱形, BMC90,菱形 MENF 是正方形14(10 分)折纸是一种传统的手工艺术,也是很多人从

7、小就经历的事,在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想如下图把一张直角三角形纸片按照图 1中的过程折叠后展开,便得到一个新的图形叠加矩形请按照上述操作过程完成下面的问题:(1)若上述直角三角形的面积为 6,则叠加矩形的面积为_;(2)已知 ABC 在正方形网格的格点上,在图 2 中画出 ABC 的边 BC 上的叠加矩形 EFGH(用虚线作出痕迹,实线呈现矩形,保留作图痕迹);(3)如图 3 所示的坐标系, OA3,点 P 为第一象限内的整数点,使得 OAP 的叠加矩形是正方形,写出所有满足条件的 P 点的坐标解:(1)叠加矩形的面积为 623.答案:3;(2)如图所示:(3)

8、满足条件的 P 点的横坐标不大于 3,纵坐标等于 3,有 P1(1,3); P2(2,3);P3(3,3)415(10 分)如图,在矩形 ABCD 中, AD6, CD8,菱形 EFGH 的三个顶点 E, G, H 分别在矩形 ABCD 的边 AB, CD, DA 上, AH2,连结 CF.(1)当 DG2 时,求证:四边形 EFGH 是正方形;(2)当 FCG 的面积为 2 时,求 CG 的值解:(1)证明:在矩形 ABCD 中,有 A D90, DGH DHG90.在菱形 EFGH 中, EH GH, AH2, DG2, AH DG, AEH DHG. AHE DGH. AHE DHG90. EHG90.四边形 EFGH 是正方形(2)过点 F 作 FM DC 于点 M,则 FMG90. A FMG90.连结 EG.由矩形和菱形性质,知 AB DC, HE GF, AEG MGE, HEG FGE, AEH MGF. EH GF, AEH MGF. FM AH2. S FCG CGFM CG22,12 12 CG2.5

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1