1、考研数学一(概率统计)-试卷 17 及答案解析(总分:68.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设随机变量 X,Y 的分布函数分别为 F 1 (x),F 2 (x),为使得 F(x)=aF 1 (x)+bF 2 (x)为某一随机变量的分布函数,则有( ) (分数:2.00)A.B.C.D.3.设随机变量 x 的分布函数为 F(x),则下列函数中可作为某随机变量的分布函数的是( )(分数:2.00)A.F(x 2 )B.F(一 x)C.1 一 F(x)D.F(2x 一 1)4
2、.设随机变量 X 服从参数为 1 的指数分布,则随机变量 Y=min(X,2)的分布函数( )(分数:2.00)A.是阶梯函数B.恰有一个间断点C.至少有两个间断点D.是连续函数5.设随机变量 X,Y 相互独立,它们的分布函数为 F X (x),F Y (y),则 Z=min(X,Y)的分布函数为( )(分数:2.00)A.F Z (z)=maxF X (z),F Y (z)B.F Y (z)=minF X (z),F Y (z)C.F Y (z)=1 一1 一 F X (z)1 一 F Y (z)D.F Y (z)=F Y (z)6.设随机变量 X,Y 相互独立,它们的分布函数为 F X (
3、x),F Y (y),则 Z=maxX,Y)的分布函数为( )(分数:2.00)A.F Z (z)=maxF X (z),F Y (z)B.F Z (z)=F X (z),F Y (z)C.F Z (z)=minF X (z),F Y (z)D.F Z (z)=F Y (z)7.设随机变量 X 与 Y 相互独立且都服从参数为 的指数分布,则下列随机变量中服从参数为 2 的指数分布的是( )(分数:2.00)A.X+YB.XYC.max(X,y)D.rain(X,Y)8.设随机变量 X 和 Y 都服从正态分布,则( )(分数:2.00)A.X+Y 一定服从正态分布B.(X,Y)一定服从二维正态分
4、布C.X 与 Y 不相关,则 X,Y 相互独立D.若 X 与 y 相互独立,则 XY 服从正态分布9.若(X,Y)服从二维正态分布,则X,Y 一定相互独立;若 XY =0,则 X,Y 一定相互独立;X 和Y 都服从一维正态分布;X,Y 的任一线性组合服从一维正态分布上述几种说法中正确的是( )(分数:2.00)A.B.C.D.10.设随机变量 X,Y 都是正态变量,且 X,Y 不相关,则( )(分数:2.00)A.X,Y 一定相互独立B.(X,Y)一定服从二维正态分布C.X,Y 不一定相互独立 D.X+Y 服从一维正态分布11.设随机变量 X,Y 相互独立,且 X (分数:2.00)A.XYB
5、.X+YC.X2YD.Y2X二、填空题(总题数:6,分数:12.00)12.设随机变量 X,Y 相互独立,且 XN(0,4),Y 的分布律为 Y (分数:2.00)填空项 1:_13.设(X,Y)的联合分布函数为 F(x,y)= (分数:2.00)填空项 1:_14.设 X,Y 相互独立且都服从(0,2)上的均匀分布,令 Z=min(X,Y),则 P(0Z1)= 1(分数:2.00)填空项 1:_15.设随机变量 X 和 Y 相互独立,且分布函数为 F X (x)= (分数:2.00)填空项 1:_16.设随机变量(X,Y)的联合密度为 f(x,y)= (分数:2.00)填空项 1:_17.设
6、 X,Y 为两个随机变量,且 P(X0,Y0)= (分数:2.00)填空项 1:_三、解答题(总题数:17,分数:34.00)18.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_19.有甲、乙两个口袋,两袋中都有 3 个白球 2 个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4 个球,设 4 个球中的黑球数用 X 表示,求 X 的分布律(分数:2.00)_20.设一设备在时间长度为 t 的时间内发生故障的次数 N(t)P(t) (1)求相继两次故障之间时间间隔T 的概率分布; (2)求设备在无故障工作 8 小时下,再无故障工作 8 小时的概率(分数:2.00)_21.设
7、一电路由三个电子元件并联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为 的指数分布,设电路正常工作的时间为 T,求 T 的分布函数(分数:2.00)_22.设随机变量 X 满足X1,且 P(X=一 1)= (分数:2.00)_23.设 X 的密度函数为 f X (x)= (分数:2.00)_24.设随机变量 X 的概率密度为 f X (x)= (分数:2.00)_25.设随机变量 X 服从参数为 2 的指数分布,证明:Y=1 一 e -2X 在区间(0,1)上服从均匀分布(分数:2.00)_26.设 Y (分数:2.00)_27.设随机变量 XE(),令 Y= (分数:2
8、.00)_28.设随机变量 X 1 ,X 2 ,X 3 ,X 4 ,独立同分布,且 X i (分数:2.00)_29.设随机变量 X,Y 独立同分布,且 P(X=i)= (分数:2.00)_30.设随机变量 X 与 Y 相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于 X 和 Y 的边缘分布律的部分数值,试将其余的数值填入表中空白处 (分数:2.00)_31.设二维随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_32.设随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_33.设随机变量 XN(,),YU一 ,且 X,Y 相互独立,令 Z=
9、X+Y,求 f Z (z)(分数:2.00)_34.设随机变量 XU(0,1),在 X=x(0x1)下,YU(0,x)(1)求 X,Y 的联合密度函数;(2)求 Y 的边缘密度函数(分数:2.00)_考研数学一(概率统计)-试卷 17 答案解析(总分:68.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设随机变量 X,Y 的分布函数分别为 F 1 (x),F 2 (x),为使得 F(x)=aF 1 (x)+bF 2 (x)为某一随机变量的分布函数,则有( ) (分数:2.00)
10、A.B.C.D. 解析:解析:根据性质 F(+)=1,得正确答案为(D)3.设随机变量 x 的分布函数为 F(x),则下列函数中可作为某随机变量的分布函数的是( )(分数:2.00)A.F(x 2 )B.F(一 x)C.1 一 F(x)D.F(2x 一 1) 解析:解析:函数 (x)可作为某一随机变量的分布函数的充分必要条件是: (1)0(x)1; (2)(x)单调不减; (3)(x)右连续; (4)(一)=0,(+)=1 显然只有 F(2x 一 1)满足条件,选(D)4.设随机变量 X 服从参数为 1 的指数分布,则随机变量 Y=min(X,2)的分布函数( )(分数:2.00)A.是阶梯函
11、数B.恰有一个间断点 C.至少有两个间断点D.是连续函数解析:解析:F Y (y)=P(Yy)=Pmin(X,2)y=1 一 Pmin(X,2)y =1 一 P(Xy,2y)=1 一P(Xy)P(2y) 当 y2 时,F Y (y)=1;当 y2 时,F Y (y)=1 一 P(Xy)=P(Xy)=F X (y), F X (x)= ,所以当 0y2 时,F Y (y)=1e -y ; 当 y0 时,F Y (y)=0,即 F Y (y)= 5.设随机变量 X,Y 相互独立,它们的分布函数为 F X (x),F Y (y),则 Z=min(X,Y)的分布函数为( )(分数:2.00)A.F Z
12、 (z)=maxF X (z),F Y (z)B.F Y (z)=minF X (z),F Y (z)C.F Y (z)=1 一1 一 F X (z)1 一 F Y (z) D.F Y (z)=F Y (z)解析:解析:F Z (z)=P(Zz)=Pmin(X,Y)z=1 一 Pmin(X,Y)z =1 一 P(Xz,Yz)=1 一P(Xz)P(Yz) =1 一1 一 P(Xz)1 一 P(Yz)=1 一1 一 F X (z)1 一 F Y (z),选(C)6.设随机变量 X,Y 相互独立,它们的分布函数为 F X (x),F Y (y),则 Z=maxX,Y)的分布函数为( )(分数:2.0
13、0)A.F Z (z)=maxF X (z),F Y (z)B.F Z (z)=F X (z),F Y (z) C.F Z (z)=minF X (z),F Y (z)D.F Z (z)=F Y (z)解析:解析:F Z (z)=P(Zz)=Pmax(X,Y)z=P(Xz,Yz) =P(Xz)P(Yz)=F X (z)F Y (z),选(B)7.设随机变量 X 与 Y 相互独立且都服从参数为 的指数分布,则下列随机变量中服从参数为 2 的指数分布的是( )(分数:2.00)A.X+YB.XYC.max(X,y)D.rain(X,Y) 解析:解析: 事实上,min(X,Y)的分布函数为 Pmin
14、(X,Y)x=1 一 Pmin(X,Y)x=1 一P(Xx,Yx) =1 一 P(Xxz)P(Yx)=1 一1 一 F(x) 2 = 8.设随机变量 X 和 Y 都服从正态分布,则( )(分数:2.00)A.X+Y 一定服从正态分布B.(X,Y)一定服从二维正态分布C.X 与 Y 不相关,则 X,Y 相互独立D.若 X 与 y 相互独立,则 XY 服从正态分布 解析:解析:若 X,Y 独立且都服从正态分布,则 X,Y 的任意线性组合也服从正态分布,选(D)9.若(X,Y)服从二维正态分布,则X,Y 一定相互独立;若 XY =0,则 X,Y 一定相互独立;X 和Y 都服从一维正态分布;X,Y 的
15、任一线性组合服从一维正态分布上述几种说法中正确的是( )(分数:2.00)A.B. C.D.解析:解析:因为(X,Y)服从二维正态分布,所以 X,Y 都服从一维正态分布,aX+bY 服从一维正态分布,且 X,Y 独立与不相关等价,所以选(B)10.设随机变量 X,Y 都是正态变量,且 X,Y 不相关,则( )(分数:2.00)A.X,Y 一定相互独立B.(X,Y)一定服从二维正态分布C.X,Y 不一定相互独立 D.X+Y 服从一维正态分布解析:解析:只有当(X,Y)服从二维正态分布时,X,Y 独立才与 X,Y 不相关等价,由 X,Y 仅仅是正态变量且不相关不能推出 X,Y 相互独立,(A)不对
16、;若 X,Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但 X,Y 不一定相互独立,(B)不对;当 X,Y 相互独立时才能推出 X+Y 服从一维正态分布,(D)不对,故选(C)11.设随机变量 X,Y 相互独立,且 X (分数:2.00)A.XYB.X+Y C.X2YD.Y2X解析:解析:Z=YXN(1,1),因为 XYN(一 1,1),X+YN(1,1),X 一 2Y二、填空题(总题数:6,分数:12.00)12.设随机变量 X,Y 相互独立,且 XN(0,4),Y 的分布律为 Y (分数:2.00)填空项 1:_ (正确答案:正确答案:046587)解析:解析:P(X+2Y4
17、) =P(Y=1)P(X42YY=1)+P(Y=2)P(X42YY=2) +P(Y=3)P(X42YY=3)13.设(X,Y)的联合分布函数为 F(x,y)= (分数:2.00)填空项 1:_ (正确答案:正确答案:e -2 +e -3 一 e -5)解析:解析:由 F X (x)=F(x,+)= 14.设 X,Y 相互独立且都服从(0,2)上的均匀分布,令 Z=min(X,Y),则 P(0Z1)= 1(分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:由 X,Y 在(0,2)上服从均匀分布得 因为 X,Y 相互独立,所以 f z (z)=P(Zz)=1一 P(Zz)=1
18、一 Pmin(X,Y)Z=1P(Xz,Yz) =1 一 P(Xz)P(Yz)=1 一1 一 P(Xz)1 一P(Yz) =1 一1 一 F X (z)1 一 F Y (z) 于是 P(0Z1)=F Z (1)一 F Z (0)= 15.设随机变量 X 和 Y 相互独立,且分布函数为 F X (x)= (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:F U (u)=P(Uu)=P(X+Yu),当 u0 时,F U (u)=0; 当 0u1 时,F U (u)=P(Uu)=P(X+Yu)=P(X=0,Yu) =P(X=0)P(Yu)= 当 1u2 时,F U (u)=P(X
19、=0,Yu)+P(X=1,Yu一 1) 16.设随机变量(X,Y)的联合密度为 f(x,y)= (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:P(X5Y3)=17.设 X,Y 为两个随机变量,且 P(X0,Y0)= (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:令X0=A,Y0=B,则有 P(AB)= ,故 Pmax(X,Y)0)=1 一 Pmax(X,Y)0)=1一 P(X0,Y0) =1 一三、解答题(总题数:17,分数:34.00)18.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:19.有甲、乙两个口袋,两袋
20、中都有 3 个白球 2 个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4 个球,设 4 个球中的黑球数用 X 表示,求 X 的分布律(分数:2.00)_正确答案:(正确答案:设 A=从甲袋中取出黑球),X 的可能取值为 0,1,2,3,令X=i=B i (i=0,1,2,3),则 )解析:20.设一设备在时间长度为 t 的时间内发生故障的次数 N(t)P(t) (1)求相继两次故障之间时间间隔T 的概率分布; (2)求设备在无故障工作 8 小时下,再无故障工作 8 小时的概率(分数:2.00)_正确答案:(正确答案:(1)T 的概率分布函数为 F(t)=P(Tt); 当 t0 时,F(t)
21、=0; 当 t0 时,F(t)=P(Tt)=1 一 P(Tt)=1 一 P(N=0)=1 一 e -t , )解析:21.设一电路由三个电子元件并联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为 的指数分布,设电路正常工作的时间为 T,求 T 的分布函数(分数:2.00)_正确答案:(正确答案:设三个元件正常工作的时间为 T i (i=1,2,3),T 1 ,T 2 ,T 3 相互独立且其分布函数都是 当 t0 时,令 A=T 1 t,B=T 2 t,C=T 3 t,且 A,B,C 独立, 则 F T (t)=P(Tt)=P(A+B+C) P(A+B+C)=P(A)+P(
22、B)+P(C)一 P(AB)P(AC)一 P(BC)+P(ABC), P(A)=P(B)=P(C)=1 一 e -t , F T (t)=3(1 一 e -t )一 3(1 一 e -t ) 2 +(1 一 e -t ) 3 于是 F T (t)= )解析:22.设随机变量 X 满足X1,且 P(X=一 1)= (分数:2.00)_正确答案:(正确答案:(1)当 x一 1 时,F(x)=0; )解析:23.设 X 的密度函数为 f X (x)= (分数:2.00)_正确答案:(正确答案: )解析:24.设随机变量 X 的概率密度为 f X (x)= (分数:2.00)_正确答案:(正确答案:F
23、 Y (y)=P(Yy)=P(e x y) 当 y1 时,X0,F Y (y)=0; 当 y1 时,X0,F Y (y)=P(e X y)=P(Xlny)= - lny f X (x)dx= 0 lny e -x dx, f Y (y)= )解析:25.设随机变量 X 服从参数为 2 的指数分布,证明:Y=1 一 e -2X 在区间(0,1)上服从均匀分布(分数:2.00)_正确答案:(正确答案:因为 X 服从参数为 2 的指数分布,所以其分布函数为 F X (x)= Y 的分布函数为 F Y (y)=P(Yy)=P(1 一 e -2X y), 当 y0 时,F Y (y)=P(X0)=0;
24、当 y1 时,F Y (y)=P(一X+)=1; )解析:26.设 Y (分数:2.00)_正确答案:(正确答案:由E 一 A= =( 一 1)( 一 2)(Y)=0 得矩阵 A 的特征值为 1 =1, 2 =2, 3 =Y 若 Y1,2 时,矩阵 A 一定可以对角化; 当 Y=1 时,A= ,=1 为二重特征值, 因为 r(EA)=2,所以 A 不可对角化; 当 Y=2 时,A= ,=2 为二重特征值, 因为 r(2EA)=1,所以 A 可对角化,故 A 可对角化的概率为 P(Y1,2)+P(Y 一 2)=P(Y=0)+P(Y=2)+P(Y=3)= )解析:27.设随机变量 XE(),令 Y
25、= (分数:2.00)_正确答案:(正确答案:P(X+Y=0)=P(Y=一 X)=P(X1)=P(X1)+P(X一 1) =P(X1)=1 一 P(X1)=1一 F X (1)=e - F Y (y)=P(Yy)=P(Yy,X1)+P(Yy,X1) =P(Xy,X1)+P(一Xy,X1)+P(一 Xy,X一 1) =P(Xy,0X1)+P(X一 y,X1) 当 y一 1 时,F Y (y)=P(X一 y)=e y ; 当一 1y0 时,F Y (y)=P(X1)=e - ; 当 0y1 时,F Y (y)=P(Xy)+P(X1)=1一 e -y +e - ; 当 y1 时,F Y (y)=P(
26、0X1)+P(X1)=1, 故 F Y (y)= )解析:28.设随机变量 X 1 ,X 2 ,X 3 ,X 4 ,独立同分布,且 X i (分数:2.00)_正确答案:(正确答案:X= =X 1 X 4 一 X 2 X 3 ,令 U=X 1 X 4 ,V=X 2 X 3 ,且 U,V 独立同分布 P(U=1)=P(X 1 =1,X 4 =1)=016,P(U=0)=084,X 的可能取值为一 1,0,1 P(X=一 1)=P(U=0,V=1)=P(U=0)P(V=1)=084016=01344, P(X=1)=P(U=1,V=0)=P(U=1)P(V=0)=016084=01344, P(X
27、=0)=1201344=07312,于是 X )解析:29.设随机变量 X,Y 独立同分布,且 P(X=i)= (分数:2.00)_正确答案:(正确答案:(1)由于 X,Y 相互独立,所以 P(U=1,V=2)=P(U=1,V=3)=P(U=2,V=3)=0 所以(U,V)的联合分布律为 )解析:30.设随机变量 X 与 Y 相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于 X 和 Y 的边缘分布律的部分数值,试将其余的数值填入表中空白处 (分数:2.00)_正确答案:(正确答案: )解析:31.设二维随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_正确答案:
28、(正确答案:(1)f X (X)= - + f(x,y)dy 当 x0 时,f X (x)=0; 当 x0 时,f X (x)= - + f(x,y)dy= 0 + 2e -(x+2y) dy=e -x 0 + e -2y d(2y)=e -x , 则 f X (x)= f Y (y)= - + f(x,y)dx, 当 y0 时,f Y (y)=0; 当 y0 时,f Y (y)= 0 + 2e -(x+2y) dx=2e -2y 0 + e -x dx=2e -2y , 则 f Y (y)= (2)因为 f(x,y)=f X (x)f Y (y),所以随机变量 X,Y 相互独立 (3)F Z
29、 (z)=P(Zz)=P(X+2yz)= f(x,y)dxdy, 当 z0 时,F Z (z)=0; 当 z0 时, )解析:32.设随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_正确答案:(正确答案: )解析:33.设随机变量 XN(,),YU一 ,且 X,Y 相互独立,令 Z=X+Y,求 f Z (z)(分数:2.00)_正确答案:(正确答案:因为 XN(, 2 ),YU,所以 X,Y 的密度函数为 )解析:34.设随机变量 XU(0,1),在 X=x(0x1)下,YU(0,x)(1)求 X,Y 的联合密度函数;(2)求 Y 的边缘密度函数(分数:2.00)_正确答案:(正确答案: )解析: