【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc

上传人:registerpick115 文档编号:1394087 上传时间:2019-12-03 格式:DOC 页数:8 大小:155.50KB
下载 相关 举报
【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc_第1页
第1页 / 共8页
【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc_第2页
第2页 / 共8页
【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc_第3页
第3页 / 共8页
【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc_第4页
第4页 / 共8页
【考研类试卷】考研数学一(概率统计)-试卷2及答案解析.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、考研数学一(概率统计)-试卷 2 及答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设随机变量 X (分数:2.00)A.0B.C.D.13.设随机变量 X,Y 相互独立,XU(0,2),YE(1),则 P(X+Y1)等于( )(分数:2.00)A.1 一B.1 一 eC.eD.2e4.设随机变量(X,Y)的分布函数为 F(x,y),用它表示概率 P(Xa,Yy),则下列结论正确的是( )(分数:2.00)A.1 一 F(一 a,y)B.1 一 F(一 a,y0)C

2、.F(+,y0)一 F(一 a,y 一 0)D.F(+,y)一 F(一 a,y)5.设随机变量 X,Y 相互独立,且 XN(0,1),YN(1,1),则( ) (分数:2.00)A.B.C.D.6.设 X,y 相互独立且都服从 N(0,4)分布,则( ) (分数:2.00)A.B.C.D.7.设 X,Y 为两个随机变量,P(X1,Y1)= ,则 Pmin(X,Y)1)=( ) (分数:2.00)A.B.C.D.8.设二维随机变量(X,Y)在区域 D:x 2 +y 2 9a 2 (a0)上服从均匀分布,p=P(X 2 +9Y 2 9a 2 ),则( )(分数:2.00)A.p 的值与 a 无关,

3、且 p=B.p 的值与 a 无关,且 p=C.p 的值随 a 值的增大而增大D.p 的值随 a 值的增大而减少9.设(X,Y)服从二维正态分布,则下列说法不正确的是( )(分数:2.00)A.X,Y 一定相互独立B.X,Y 的任意线性组合 l 1 X+l 2 Y 服从正态分布C.X,Y 都服从正态分布D.=0 时 X,Y 相互独立二、填空题(总题数:4,分数:8.00)10.设 XP(1),YP(2),且 X,Y 相互独立,则 P(X+Y=2)= 1(分数:2.00)填空项 1:_11.设随机变量 X,Y 相互独立且都服从二项分布 B(n,p),则 Pmin(X,Y)=0= 1(分数:2.00

4、)填空项 1:_12.设二维随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)填空项 1:_填空项 1:_13.设随机变量 XN(0, 2 ),YN(0,4 2 ),且 P(X1,Y2)= (分数:2.00)填空项 1:_三、解答题(总题数:19,分数:38.00)14.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_15.设 X,Y 的概率分布为 X (分数:2.00)_16.设起点站上车人数 X 服从参数为 (0)的泊松分布,每位乘客中途下车的概率为 p(0p1),且中途下车与否相互独立,以 Y 表示中途下车人数 (1)求在发车时有 n 个乘客的情况下

5、,中途有 m 个乘客下车的概率; (2)求(X,Y)的概率分布(分数:2.00)_17.袋中有 10 个大小相等的球,其中 6 个红球 4 个白球,随机抽取 2 个,每次取 1 个,定义两个随机变量如下: (分数:2.00)_18.设(X,Y)在区域 D:0x1,|y|x 内服从均匀分布(1)求随机变量 X 的边缘密度函数; (2)设Z=2X+1,求 D(Z)(分数:2.00)_19.设(X,Y)的联合概率密度为 f(x,y)= (分数:2.00)_20.随机变量(X,Y)的联合密度函数为 f(x,y)=* (1)求常数 A; (2)求(X,Y)落在区域 x 2 +y 2 *内的概率(分数:2

6、.00)_21.设两台同样的记录仪,每台无故障工作的时间服从参数为 5 的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动求两台记录仪无故障工作的总时间 T 的概率密度(分数:2.00)_22.设 X,Y 相互独立,且 XN(1,2),YN(0,1),求 Z=2XY+3 的密度(分数:2.00)_23.设 X 在区间一 2,21 上服从均匀分布,令 Y= (分数:2.00)_24.设二维随机变量(X,Y)的联合分布律为 (分数:2.00)_25.设二维随机变量(X,Y)的联合密度为 f(x,y)= (分数:2.00)_26.设随机变量(X,Y)的联合密度为 f(x,y)= 求:(1

7、)X,Y 的边缘密度; (2) (分数:2.00)_27.设(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_28.设一设备开机后无故障工作时间 X 服从指数分布,平均无故障工作时间为 5 小时,设备定时开机,出现故障自动关机,而存无故瞳下工作 2 小时便自动关机,求该设备每次开机无故障工作时间 Y 的分布(分数:2.00)_29.设(X,Y)f(x,y)= (分数:2.00)_30.设随机变量 X,Y 相互独立且都服从标准正态分布,令 U=X 2 +Y 2 求: (1)f(u); (2)PUD(U)|UE(U)(分数:2.00)_31.设 X,Y 相互独立,且 XB(3, (分

8、数:2.00)_32.设随机变量 XU(0,1),YE(1),且 X,Y 相互独立,求随机变量 Z=X+Y 的概率密度(分数:2.00)_考研数学一(概率统计)-试卷 2 答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设随机变量 X (分数:2.00)A.0 B.C.D.1解析:解析:由题意得 P(X 1 =一 1,X 2 =一 1)=P(X 1 =一 1,X 2 =1) =P(X 1 =1,X 2 =一 1)一 P(X 1 =1,X 2 =1)=0 3.设

9、随机变量 X,Y 相互独立,XU(0,2),YE(1),则 P(X+Y1)等于( )(分数:2.00)A.1 一 B.1 一 eC.eD.2e解析:解析:由 XU(0,2),YE(1)得4.设随机变量(X,Y)的分布函数为 F(x,y),用它表示概率 P(Xa,Yy),则下列结论正确的是( )(分数:2.00)A.1 一 F(一 a,y)B.1 一 F(一 a,y0)C.F(+,y0)一 F(一 a,y 一 0) D.F(+,y)一 F(一 a,y)解析:解析:P(一 Xa,Yy)=P(X一 a,Yy) 因为 P(Yy)=P(X一 a,YY)+P(X一 a,Yy), 所以 P(X一 a,Yy)

10、=P(Yy)一 P(X一 a,Yy) =F(+,y0)一 F(一 a 一 0,y0),选(C)5.设随机变量 X,Y 相互独立,且 XN(0,1),YN(1,1),则( ) (分数:2.00)A.B. C.D.解析:解析:X,Y 独立,XN(0,1),YN(1,1),X+YN(1,2)P(X+Y1)=6.设 X,y 相互独立且都服从 N(0,4)分布,则( ) (分数:2.00)A.B. C.D.解析:解析:因为 X,Y 相互独立且都服从 N(0,4)分布, 所以 xyN(0,8),从而 P(x+y0)= ,故(C)、(D)都不对; Pmax(X,Y)0=1 一 Pmax(X,Y)0=1 一

11、P(X0,Y0) =1 一P(X0)P(Y0)7.设 X,Y 为两个随机变量,P(X1,Y1)= ,则 Pmin(X,Y)1)=( ) (分数:2.00)A.B.C. D.解析:解析:令 A=X1,B=Y1,则 P(AB)= , Pmin(X,Y)1=1 一 Pmin(X,Y)1=1 一P(X1,Y1)=1 一 =P(A+B)=P(A)+P(B)一 P(AB)=8.设二维随机变量(X,Y)在区域 D:x 2 +y 2 9a 2 (a0)上服从均匀分布,p=P(X 2 +9Y 2 9a 2 ),则( )(分数:2.00)A.p 的值与 a 无关,且 p=B.p 的值与 a 无关,且 p= C.p

12、 的值随 a 值的增大而增大D.p 的值随 a 值的增大而减少解析:解析:因为(X,Y)在区域 D:x 2 +y 2 9a 2 上服从均匀分布, 9.设(X,Y)服从二维正态分布,则下列说法不正确的是( )(分数:2.00)A.X,Y 一定相互独立 B.X,Y 的任意线性组合 l 1 X+l 2 Y 服从正态分布C.X,Y 都服从正态分布D.=0 时 X,Y 相互独立解析:解析:因为(X,Y)服从二维正态分布,所以(B),(C),(D)都是正确的,只有当 =0 时,X,Y 才相互独立,选(A)二、填空题(总题数:4,分数:8.00)10.设 XP(1),YP(2),且 X,Y 相互独立,则 P

13、(X+Y=2)= 1(分数:2.00)填空项 1:_ (正确答案:正确答案: )解析:解析:P(X+Y=2)=P(X=0,Y=2)+P(X=1,Y=1)+P(X=2,Y=0), 由 X,Y 相互独立得 P(X+Y=2)=P(X=)P(Y=2)+P(X=1)P(Y=1)+P(X=2)P(Y=0) =11.设随机变量 X,Y 相互独立且都服从二项分布 B(n,p),则 Pmin(X,Y)=0= 1(分数:2.00)填空项 1:_ (正确答案:正确答案:2(1p) n 一(1p) 2n)解析:解析:令 A=(X=0),B=(Y=0),则 Pmin(X,Y)=0)=P(A+B)=P(A)+P(B)一

14、P(AB) =P(X=0)+P(Y=0)=P(X=0,Y=0)=2(1p) n 一(1p) 2n12.设二维随机变量(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)填空项 1:_ (正确答案:正确答案:6)填空项 1:_ (正确答案:*)解析:解析:13.设随机变量 XN(0, 2 ),YN(0,4 2 ),且 P(X1,Y2)= (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:三、解答题(总题数:19,分数:38.00)14.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:15.设 X,Y 的概率分布为 X (分数:2.00)_正

15、确答案:(正确答案:(1)因为 P(XY=0)=1,所以 P(X=一 1,Y=1)=P(X=1,Y=1)=0, )解析:16.设起点站上车人数 X 服从参数为 (0)的泊松分布,每位乘客中途下车的概率为 p(0p1),且中途下车与否相互独立,以 Y 表示中途下车人数 (1)求在发车时有 n 个乘客的情况下,中途有 m 个乘客下车的概率; (2)求(X,Y)的概率分布(分数:2.00)_正确答案:(正确答案:(1)设 A=(发车时有 n 个乘客),B=(中途有 m 个人下车),则 P(B|A)=P(Y=m|X=n)=C n m p m (1 一 p) nm (0mn) (2)P(X=n,Y=m)

16、=P(AB)=P(B|A)P(A) =C n m p m (1 一 p) nm )解析:17.袋中有 10 个大小相等的球,其中 6 个红球 4 个白球,随机抽取 2 个,每次取 1 个,定义两个随机变量如下: (分数:2.00)_正确答案:(正确答案:(1)(X,Y)的可能取值为(0,0),(1,0),(0,1),(1,1) )解析:18.设(X,Y)在区域 D:0x1,|y|x 内服从均匀分布(1)求随机变量 X 的边缘密度函数; (2)设Z=2X+1,求 D(Z)(分数:2.00)_正确答案:(正确答案: )解析:19.设(X,Y)的联合概率密度为 f(x,y)= (分数:2.00)_正

17、确答案:(正确答案:(1)当 0x1 时,f X (x)= + f(x,y)dy= 0 2x dy=2x, )解析:20.随机变量(X,Y)的联合密度函数为 f(x,y)=* (1)求常数 A; (2)求(X,Y)落在区域 x 2 +y 2 *内的概率(分数:2.00)_正确答案:(正确答案: )解析:21.设两台同样的记录仪,每台无故障工作的时间服从参数为 5 的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动求两台记录仪无故障工作的总时间 T 的概率密度(分数:2.00)_正确答案:(正确答案:用 X,Y 分别表示两台记录仪先后开动无故障工作的时间,则 T=X+Y, )解析:2

18、2.设 X,Y 相互独立,且 XN(1,2),YN(0,1),求 Z=2XY+3 的密度(分数:2.00)_正确答案:(正确答案:因为 X,Y 相互独立且都服从正态分布,所以 X,Y 的线性组合仍服从正态分布,即 Z=2XY+3 服从正态分布,由 E(Z)=2E(X)一 E(Y)+3=5, D(Z)=4D(X)+D(Y)=9, 则 Z 的密度函数为 f Z (z)= )解析:23.设 X 在区间一 2,21 上服从均匀分布,令 Y= (分数:2.00)_正确答案:(正确答案:(1)因为 X 在区间一 2,2上服从均匀分布,所以 f X (x)= (Y,Z)的可能取值为(一 1,一 1),(一

19、1,1),(1,一 1),(1,1) )解析:24.设二维随机变量(X,Y)的联合分布律为 (分数:2.00)_正确答案:(正确答案:因为 P(Y=1)=06, )解析:25.设二维随机变量(X,Y)的联合密度为 f(x,y)= (分数:2.00)_正确答案:(正确答案:(1)1=c 0 + dx 0 + xe x(y+1) =dy=cc=1 (2)当 x0 时,f(x)=0;当x0 时,fx(x)= 0 + xe x(y+1) =dy=e x 当 y0 时,f Y (y)=0;当 y0 时,f Y (y)= 0 + xe x(y+1) dx= 显然当 x0,y0 时,f(x,y)f X (x

20、)f Y (y),所以 X,Y 不相互独立 (3)当 z0 时,F z (z)=0; 当 x0 时,F z (z)=P(Zz)=Pmax(X,Y)z=P(Xz,Yz) )解析:26.设随机变量(X,Y)的联合密度为 f(x,y)= 求:(1)X,Y 的边缘密度; (2) (分数:2.00)_正确答案:(正确答案: )解析:27.设(X,Y)的联合密度函数为 f(x,y)= (分数:2.00)_正确答案:(正确答案:(1)由 + dx + f(x,y)dy=a 0 + xdx x + e y dy=a 0 + xe x dx=1,得 a=1 (2)当 x0 时,f X (x)=0; 当 x0 时

21、,f x (x)= + f(x,y)dy= x + xe y dy=xe x )解析:28.设一设备开机后无故障工作时间 X 服从指数分布,平均无故障工作时间为 5 小时,设备定时开机,出现故障自动关机,而存无故瞳下工作 2 小时便自动关机,求该设备每次开机无故障工作时间 Y 的分布(分数:2.00)_正确答案:(正确答案:因为 XE(),所以 E(X)= ,根据题意有 Y=min(x,2) 当 y0 时,F(y)=0;当 y2 时,F(y)=1; 当 0y2 时,F(y)=P(Yy)=Pmin(X,2)y=P(Xy)=1 , 故 Y服从的分布为 F(y)= )解析:29.设(X,Y)f(x,

22、y)= (分数:2.00)_正确答案:(正确答案:(1)0x1 时,f X (x)= + f(x,y)dy= 0 x 12y 2 dy=4x 3 ,则 )解析:30.设随机变量 X,Y 相互独立且都服从标准正态分布,令 U=X 2 +Y 2 求: (1)f(u); (2)PUD(U)|UE(U)(分数:2.00)_正确答案:(正确答案:(1)因为 X,Y 相互独立且都服从标准正态分布,所以(X,Y)的联合密度函数为 )解析:31.设 X,Y 相互独立,且 XB(3, (分数:2.00)_正确答案:(正确答案:P(Uu)=Pmax(X,Y)u=PXu,Yu=P(Xu)P(Yu), P(U196)=P(X196)P(Y196)=P(X=0)+P(X=1)P(Y196) )解析:32.设随机变量 XU(0,1),YE(1),且 X,Y 相互独立,求随机变量 Z=X+Y 的概率密度(分数:2.00)_正确答案:(正确答案: )解析:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 大学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1