Introduction to Radial Basis Function.ppt

上传人:吴艺期 文档编号:376711 上传时间:2018-10-08 格式:PPT 页数:24 大小:218.50KB
下载 相关 举报
Introduction to Radial Basis Function.ppt_第1页
第1页 / 共24页
Introduction to Radial Basis Function.ppt_第2页
第2页 / 共24页
Introduction to Radial Basis Function.ppt_第3页
第3页 / 共24页
Introduction to Radial Basis Function.ppt_第4页
第4页 / 共24页
Introduction to Radial Basis Function.ppt_第5页
第5页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Introduction to Radial Basis Function,Mark J. L. Orr,Radial Basis Function Networks,Linear model,Radial functions,Gassian RBF: c : center, r : radius,Multiquadric RBF,monotonically decreases with distance from center,monotonically increases with distance from center,Gaussian RBF,multiqradric RBF,Lea

2、st Squares,model,training data : (x1, y1), (x2, y2), , (xp, yp) minimize the sum-squared-error,Example,Sample points (noisy) from the curve y = x : (1, 1.1), (2, 1.8), (3, 3.1) linear model : f(x) = w1h1(x) + w2h2(x), where h1(x) = 1, h2(x) = x estimate the coefficient w1, w2,f(x) = x,New model : f(

3、x) = w1h1(x) + w2h2(x) + w3h3(x) where h1(x) = 1, h2(x) = x, h3(x) = x2,absorb all the noise : overfit If the model is too flexible, it will fit the noise If it is too inflexible, it will miss the target,The optimal weight vector,model,sum-squared-error,cost function : weight penalty term is added,E

4、xample,Sample points (noisy) from the curve y = x : (1, 1.1), (2, 1.8), (3, 3.1) linear model : f(x) = w1h1(x) + w2h2(x), where h1(x) = 1, h2(x) = x estimate the coefficient w1, w2,The projection matrix,At the optimal weight: the value of cost function C = yTPy the sum-squared-error S = yTP2y,Model

5、selection criteria,estimates of how well the trained model will perform on future input standard tool : cross validation error variance,Cross validation,leave-one-out (LOO) cross-validation,generalized cross-validation,Ridge regression,mean-squared-error,Global ridge regression,Use GCV,re-estimation

6、 formula initialize re-estimate , until convergence,Local ridge regression,research problem,Example,Selection the RBF,forward selection starts with an empty subset added one basis function at a time most reduces the sum-squared-error until some chosen criterion stops backward elimination starts with the full subset removed one basis function at a time least increases the sum-squared-error until the chosen criterion stops decreasing,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 大学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1