1、数学建模常用模型,模型:层次分析法,问题1 选择旅游地,现有三个旅游胜地可供选择,分别为苏杭、黄山、桂林,下面将作出旅游地的选择。,面临各种各样的方案,要进行比较、判断、评价、最后 作出决策。这个过程主观因素占有相当的比重给用数学方法 解决问题带来不便。T.L.saaty等人20世纪在七十年代提出了 一种能有效处理这类问题的实用方法。层次分析法(Analytic Hierarchy Process, AHP)这是 一种定性和定量相结合的、系统化的、层次化的分析方法。 过去研究自然和社会现象主要有机理分析法和统计分析法两 种方法,前者用经典的数学工具分析现象的因果关系,后者 以随机数学为工具,通
2、过大量的观察数据寻求统计规律。近 年发展的系统分析是又一种方法,而层次分析法是系统分析 的数学工具之一。,层次分析法(AHP)具体步骤:明确问题 递阶层次结构的建立 建立两两比较的判断矩阵 层次单排序 层次综合排序,层次分析法的基本步骤,1 建立层次结构模型一般分为三层,最上面为目标层,最下 面为方案层,中间是准则层或指标层。,若上层的每个因素都支配着下一层的所有因 素,或被下一层所有因素影响,称为完全层次结 构,否则称为不完全层次结构。,建立选择旅游地层次结构,准则层A,方案层B,目标层Z,分别分别表示景色、费用、 居住、饮食、旅途。,分别表示苏杭、黄山、桂林。,设某层有 个因素,,2 构造
3、成对比较矩阵,要比较它们对上一层某一准则(或目标)的影响程度,确定 在该层中相对于某一准则所占的比重。(即把 个因素对上 层某一目标的影响程度排序),用 表示第 个因素相对于第 个因素的比较结果,则,则称为成对比较矩阵。,上述比较是两两因素之间进行的比较,比较时取19尺度。,旅游问题中,第二层A的各因素对目标层Z的影响两两比较结果如下:,1,1/2,4,3,3,2,1,7,5,5,1/4,1/7,1,1/2,1/3,1/3,1/5,2,1,1,1/3,1/5,3,1,1,分别表示 景色、费用、 居住、饮食、 旅途。,由上表,可得成对比较矩阵,旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)
4、。,问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?,3 层次单排序及一致性检验,层次单排序:确定下层各因素对上层某因素影响程度的过程。 用权值表示影响程度,先从一个简单的例子看如何确定权值。 例如 一块石头重量记为1,打碎分成 各小块,各块的重量,分别记为:,则可得成对比较矩阵,由右面矩阵可以看出,,即,,但在例2的成对比较矩阵中,,在正互反矩阵 中,若 则称 为一致阵。,一致阵的性质:,4. 的任一列(行)都是对应于特征根 的特征向量。,若成对比较矩阵是一致阵,则我们自然会取对应于最 大特征根 的归一化特征向量,定理: 阶互反阵 的最大特征根 , 当且仅
5、当 时, 为一致阵。,表示下层第 个因素对上层某因素影响程度的权值。,若成对比较矩阵不是一致阵,Saaty等人建议用其最大 特征根对应的归一化特征向量作为权向量 ,则,这样确定权向量的方法称为特征根法.,定义一致性指标,其中 为 的对角线元素之和,也为 的特征根之和。,则可得一致性指标,定义随机一致性指标,随机构造500个成对比较矩阵,随机一致性指标 RI 的数值:,一致性检验:利用一致性指标和一致性比率0.1 及随机一致性指标的数值表,对 进行检验的过程。,一般,当一致性比率,的不一致程度在容许范围之内,可用其归一化特征向量 作为权向量,否则要重新构造成对比较矩阵,对 加以调整。,时,认为,
6、4 层次总排序及其一致性检验确定某层所有因素对于总目标相对重要性的排序权值过程, 称为层次总排序从最高层到最低层逐层进行。设:,对总目标Z的排序为,的层次单排序为,即 层第 个因素对 总目标的权值为:,层的层次总排序为:,A,B,层次总排序的一致性检验,设 层 对上层( 层)中因素 的层次单排序一致性指标为 ,随机一致性指为 , 则层次总排序的一致性比率为:,当 时,认为层次总排序通过一致性检验。 到此,根据最下层(决策层)的层次总排序做出最后决策。,1.建立层次结构模型该结构图包括目标层,准则层,方案层。,层次分析法的基本步骤归纳如下,3.计算单排序权向量并做一致性检验,2.构造成对比较矩阵
7、,从第二层开始用成对比较矩阵和19尺度。,对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。,计算最下层对最上层总排序的权向量。,4.计算总排序权向量并做一致性检验,进行检验。若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率 较大的成对比较矩阵。,利用总排序一致性比率,三 层次分析法建模举例,旅游问题 (1)建模,分别分别表示景色、费用、 居住、饮食、旅途。,分别表示苏杭、黄山、桂林。,(2)构造成对比较矩阵,(3
8、)计算层次单排序的权向量和一致性检验,成对比较矩阵 的最大特征值,表明 通过了一致性验证。,故,则,该特征值对应的归一化特征向量,对成对比较矩阵 可以 求层次总排序的权向量并进行一致性检验,结果如下:,计算 可知 通过一致性检验。,对总目标的权值为:,(4)计算层次总排序权值和一致性检验,又,决策层对总目标的权向量为:,同理得, 对总目标的权值分别为:,故,层次总排序通过一致性检验。,可作为最后的决策依据。,故最后的决策应为去桂林。,又 分别表示苏杭、黄山、桂林,,即各方案的权重排序为,模型:线性规划,丁的蛙泳成绩退步到115”2;戊的自由泳成绩进步到57”5, 组成接力队的方案是否应该调整?
9、,如何选拔队员组成4100米混合泳接力队?,问题二 混合泳接力队的选拔,5名候选人的百米成绩,穷举法:组成接力队的方案共有5!=120种。,目标函数,若选择队员i参加泳姿j 的比赛,记xij=1, 否则记xij=0,0-1规划模型,cij(秒)队员i 第j 种泳姿的百米成绩,约束条件,每人最多入选泳姿之一,每种泳姿有且只有1人,模型求解,最优解:x14 = x21 = x32 = x43 = 1, 其它变量为0; 成绩为253.2(秒)=413”2,MIN 66.8x11+75.6x12+87x13+58.6x14+ +67.4x51+71 x52+83.8x53+62.4x54 SUBJEC
10、T TOx11+x12+x13+x14 =1 x41+x42+x43+x44 =1x11+x21+x31+x41+x51 =1 x14+x24+x34+x44+x54 =1 END INT 20,输入LINDO求解,甲 自由泳、乙 蝶泳、丙 仰泳、丁 蛙泳.,丁蛙泳c43 =69.675.2,戊自由泳c54=62.4 57.5, 方案是否调整?,乙 蝶泳、丙 仰泳、丁 蛙泳、戊 自由泳,最优解:x21 = x32 = x43 = x51 = 1, 成绩为417”7,c43, c54 的新数据重新输入模型,用LINDO求解,指派(Assignment)问题:每项任务有且只有一人承担,每人只能承担
11、一项,效益不同,怎样分派使总效益最大.,讨论,模型:微分方程模型,(一)Malthus模型,(三)传染病模型(房室模型),(二)Logistic模型,模型1 马尔萨斯(Malthus)模型,马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),即:,马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。,Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。,所以Malthus模型假设的人口净增长率不可能始终保持常数,
12、它应当与人口数量有关。,模型2 Logistic模型,人口净增长率应当与人口数量有关,即: r=r(N),r(N)是未知函数,但根据实际背景,它无法用拟合方法来求 。,为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。,r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项),(5)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量
13、的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(5)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(5)也被称为统计筹算律的原因。,对(5)分离变量:,两边积分并整理得:,令N(0)=N0,求得:,N(t)的图形请看图,大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的
14、Logistic曲线:几乎完全吻合,见图,Malthus模型和Logistic模型的总结,Malthus模型和Logistic模型均为对微分方程所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。,用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。,Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题
15、的数学模型有相同的微分方程即可。,模型三 传染病模型,传染病是人类的大敌,通过疾病传播过程中若干重要因素之间的联系建立微分方程加以讨论,研究传染病流行的规律并找出控制疾病流行的方法显然是一件十分有意义的工作。在本节中,我们将主要用多房室系统的观点来看待传染病的流行,并建立起相应的多房室模型。,医生们发现,在一个民族或地区,当某种传染病流传时,波及到的总人数大体上保持为一个常数。即既非所有人都会得病也非毫无规律,两次流行(同种疾病)的波及人数不会相差太大。如何解释这一现象呢?试用建模方法来加以证明。,问题的提出:,设某地区共有n+1人,最初时刻共有i人得病,t时刻已感染(infective)的病
16、人数为i(t),假定每一已感染者在单位时间内将疾病传播给k个人(k称为该疾病的传染强度),且设此疾病既不导致死亡也不会康复,模型1,此模型即Malthus模型,它大体上反映了传染病流行初期的病人增长情况,在医学上有一定的参考价值,但随着时间的推移,将越来越偏离实际情况。,已感染者与尚未感染者之间存在着明显的区别,有必要将人群划分成已感染者与尚未感染的易感染,对每一类中的个体则不加任何区分,来建立两房室系统。,模型2,记t时刻的病人数与易感染人数(susceptible)分别为i(t)与s(t),初始时刻的病人数为 i。根据病人不死也不会康复的假设及(竞争项)统计筹算律,,其中:,统计结果显示,
17、(3.17)预报结果比(3.15)更接近实际情况。医学上称曲线 为传染病曲线,并称 最大值时刻t1为此传染病的流行高峰。,模型2仍有不足之处,它无法解释医生们发现的现象,且当时间趋与无穷时,模型预测最终所有人都得病,与实际情况不符。,为了使模型更精确,有必要再将人群细分,建立多房室系统,(3.18),求解过程如下:,对(3)式求导,由(1)、(2)得:,解得:,将人群划分为三类(见右图):易感染者、已感染者和已恢复者(recovered)。分别记t时刻的三类人数为s(t)、i(t)和r(t),则可建立下面的三房室模型:,模型3,由(1)式可得:,从而解得:,为揭示产生上述现象的原因(3.18)
18、中的第(1)式改写成:,其中 通常是一个与疾病种类有关的 较大的常数。,下面对 进行讨论,请参见右图,如果 ,则开始时 ,i(t)单增。但在i(t)增加的同时, 伴随地有s(t)单减。当s(t)减少到小于等于 时, i(t)开始减小,直至此疾病在该地区消失。,鉴于在本模型中的作用, 被医生们称为此疾病在该地区的阀值。 的引入解释了为什么此疾病没有波及到该地区的所有人。,图3-14,综上所述,模型3指出了传染病的以下特征:,(1)当人群中有人得了某种传染病时,此疾病并不一定流传,仅当易受感染的人数与超过阀值时,疾病才会流传起来。,(2)疾病并非因缺少易感染者而停止传播,相反,是因为缺少传播者才停止传播的,否则将导致所有人得病。,(3)种群不可能因为某种传染病而绝灭。,模型检验:,医疗机构一般依据r(t)来统计疾病的波及人数 ,从广义上理解,r(t)为t时刻已就医而被隔离的人数,是康复还是死亡对模型并无影响。,通常情况下,传染病波及的人数占总人数的百分比不会太大,故 一般是小量。利用泰勒公式展开取前三项,有:,代入(3.20)得近似方程:,积分得:,其中:,这里双曲正切函数 :,而:,图3-14给出了(3.21)式曲线的图形,可用医疗单位每天实际登录数进行比较拟合得最优曲线。,图3-14(a),