.设随机变量 X的方差存在,并且满足不等式 P|XE(X)|3 (分数:2.00)A.D(X)=2B.P|XE(X)|3C.D(X)2D.P|XE(X)|33.已知随机变量 X服从二项分布,且 E(X)=24,D(X)=144,则二项分布的参数 n,P 的值为( )(分数:2.00)A.n:4,P=
考研概率论统计Tag内容描述:
1、设随机变量 X的方差存在,并且满足不等式 P|XE(X)|3 (分数:2.00)A.D(X)=2B.P|XE(X)|3C.D(X)2D.P|XE(X)|33.已知随机变量 X服从二项分布,且 E(X)=24,D(X)=144,则二项分布的参数 n,P 的值为( )(分数:2.00)A.n:4,P=06B.n=6,P=04C.n=8,P=03D.n=24,P=014.对任意两个随机变量 X和 Y,若 E(XY)=E(X).E(Y),则( )(分数:2.00)A.D(XY)=D(X).D(Y)B.D(X+Y)=D(X)+D(Y)C.X与 Y独立D.X与 Y不独立5.已知随机变量 X与 Y均服从 01分布,且 E(XY)= 则 PX+Y1=( ) (分数:2.00)A.B.C.D.6.设二维随机变量(X,Y)满足 E(XY)=E(X).E(Y),则 X与 Y( )(分数:2.00)A.相关B.不相关C.独立D.不独立7.将一枚硬币重复掷 n次,以 X和 Y分别表示正面向上和反面向上的次数,则 X和 Y的相关系数。
2、设随机变量 X服从正态分布 N(, 2 ),则随 的增大,概率 P|X一 |应该( )(分数:2.00)A.单调增大B.单调减少C.保持不变D.增减不定3.设随机变量 X服从正态分布 N(,4 2 ),Y-N(,5 2 );记 p 1 =PX 一 4,p 2 =PY+5,则( )(分数:2.00)A.p 1 =p 2 B.p 1 p 2 C.p 1 p 2 D.因 未知,无法比较 p 1 与 p 2 的大小4.设随机变量 X的密度函数为 f X (x),Y=一 2X+3,则 Y的密度函数为( ) (分数:2.00)A.B.C.D.5.设 F 1 (x)与 F 2 (x)分别是随机变量 X 1 与 X 2 的分布函数,为使 F(x)=aF 1 (x)一 bF 2 (x)是某一随机变量的分布函数,在下列给定的各组数值中应取( ) (分数:2.00)A.B.C.D.6.已知 XN(15,4),若 X的值落入区间(一,x 1 ),(x 1 ,x 2 ),(x 2 ,x 3 ),(x 3 ,x 4 ),(x 4 ,+)内的概率。
3、2.在电炉上安装了 4个温控器,其显示温度的误差是随机的。
在使用过程中,只要有两个温控器显示的温度不低于临界温度 t 0 ,电炉就断电。
以 E表示事件“电炉断电”,而 T 1 T 2 T 3 T 4 为四个温控器显示的按递增顺序排列的温度值,则事件 E=( )(分数:2.00)A.T 1 t 0 B.T 2 t 0 C.T 3 t 0 D.T 4 t 0 3.设 A,B 为随机事件,0P(A)1,0P(B)1,则 A,B 相互独立的充要条件是( ) (分数:2.00)A.B.C.D.4.将一枚硬币独立地掷两次,引进事件:A 1 =掷第一次出现正面,A 2 =掷第二次出现正面,A 3 =正反面各出现一次,A 4 =正面出现两次,则事件( )(分数:2.00)A.A 1 ,A 2 ,A 3 相互独立B.A 2 ,A 3 ,A 4 相互独立C.A 1 ,A 2 ,A 3 两两独立D.A 2 ,A 3 ,A 4 两两独立5.假设 F(x)是随机变量 X的分布函数,则下列结论不正确的是( )(分数:2.00)A.如果 F(a)=0,则对任意 。
4、设随机事件 A与 B互不相容,则( ) (分数:2.00)A.B.C.D.3.设 A,B 为随机事件,P(A)0,则 P(B|A)=1 不等价于( )(分数:2.00)A.P(AB)=0B.P(BA)=0C.P(AB)0D.P(BA)04.某射手的命中率为 p(0p1),该射手连续射击 n次才命中 k次(kn)的概率为( )(分数:2.00)A.p k (1p) nkB.C n k p k (1p) nkC.C n1 k1 p k (1p nkD.C n1 k1 p k1 (1p) nk5.假设 X是只可能取两个值的离散型随机变量,Y 是连续型随机变量,则随机变量 X+Y的分布函数( )(分数:2.00)A.是连续函数B.是阶梯函数C.恰有一个间断点D.至少有两个间断点6.设随机变量 X的密度函数为 f X (x),Y=2X +3,则 Y的密度函数为( ) (分数:2.00)A.B.C.D.7.设随机变量(X,Y)的分布函数为 F(x,y),边缘分布为 F X (x)和 F Y (y),则概率 PX x,Yy等于( )(分数:。
5、设 X 1 ,X 2 ,X n (n1)是来自总体 N(0,1)的简单随机样本,记 则 (分数:2.00)A.B.C.D.3.设 X 1 ,X 2 ,X 8 是来自总体 N(2,1)的简单随机样本,则统计量 (分数:2.00)A. 2 (2)B. 2 (3)C.t(2)D.t(3)4.设 X 1 ,X 2 ,X n 是来自总体 XN(0,1)的简单随机样本,则统计量 (分数:2.00)A.y 2 (n1)B.yt(n1)C.YF(n,1)D.YF(1,n1)5.设随机变量 XF(n,n),记 p 1 =PX1,p 2 =PX1,则 ( )(分数:2.00)A.p 1 p 2B.p 1 p 2C.p 1 =p 2D.p 1 ,p 2 大小无法比较6.设 X 1 ,X 2 ,X 8 和 Y 1 ,Y 2 ,Y 10 分别是来自正态总体 N(1,4)和 N(2,5)的简单随机样本,且相互独立,S 1 2 ,S 2 2 分别为这两个样本的方差,则服从 F(7,9)分布的统计量是 ( ) (分数:2.00)A.B.C.D.7.设总。
6、2.已知 A,B 为随机事件,0P(A)1,0P(B)1,则 的充要条件是( ) (分数:2.00)A.B.C.D.3.若事件 A和 B同时出现的概率 P(AB)=0,则( )(分数:2.00)A.A和 B不相容(互斥)B.AB是不可能事件C.AB未必是不可能事件D.P(A)=0或 P(B)=04.设 A,B 为随机事件,0P(A)1,0P(B)1,则 A,B 相互独立的充要条件是( ) (分数:2.00)A.B.C.D.5.对于任意两个事件 A和 B,有 P(A一 B)=( ) (分数:2.00)A.B.C.D.6.设随机事件 A与 B互不相容,则( ) (分数:2.00)A.B.C.D.7.以 A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件 (分数:2.00)A.“甲种产品滞销,乙种产品畅销”B.“甲、乙两种产品均畅销”C.“甲种产品滞销”D.“甲种产品滞销或乙种产品畅销”8.对任意两个互不相容的事件 A与 B,必有( )(分数:2.00)A.如果 P(A)=0,则 P(B)=0B.如果 P(A)=0,则 P(B)=1C.如果 P(A)=1,则 。
7、设事件 A,B 满足 AB= (分数:2.00)A.互不相容B.相容C.P(AB)=P(A)P(B)D.P(AB)=P(A)3.以下结论,错误的是 ( )(分数:2.00)A.若 0P(B)1,P(AB)+P(B.若 A,B 满足 P(BA)=1,则 P(AB)=0C.设 A,B,C 是三个事件,则(AB)B=ABD.若当事件 A,B 同时发生时,事件 C必发生,则 P(C)P(A)+P(B)14.设 0P(B)1,P(A 1 )P(A 2 )0 且 P(A 1 A 2 B)=P(A 1 B)+P(A 2 B),则下列等式成立的是 ( )(分数:2.00)A.B.P(A 1 BA 2 B)=P(A 1 B)+P(A 2 B)C.P(A 1 A 2 )=P(A 1 B)+P(A 2 B)D.P(B)=P(A 1 )P(BA 1 )+P(A 2 )P(BA 2 )5.设 P(B)0,A 1 ,A 2 互不相容,则下列各式中不一定正确的是 ( ) (分数:2.00)A.B.C.D.6.设 X 1 ,X 2 为独立的连续型随机变量,分布函数分别。
8、随机事件 A与 B互不相容,0P(4)1,则下列结论中一定成立的是( )(分数:2.00)A.AB=B.C.A=BD.3.设 A,B 是任意两个随机事件,则 (分数:2.00)A.0B.C.D.14.设 A、B、C 是三个相互独立的随机事件,且 0P(C)1,则在下列给定的四对事件中不相互独立的是( ) (分数:2.00)A.B.C.D.5.设随机变量 X的分布函数为 F(x),其密度函数为 其中 A为常数,则 的值为( )(分数:2.00)A.B.C.D.6.设随机变量 XN(, 2 ),0,其分布函数 F(x)的曲线的拐点为(a,b),则(a,b)为( )(分数:2.00)A.(,)B.C.D.(0,)7.设随机变量 X与 Y相互独立,XB(1, ),y 的概率密度 f(y)= 的值为( ) (分数:2.00)A.B.C.D.8.设随机变量 X与 Y相互独立,其分布函数分别为 F X (x)与 F Y (y),则 Z=maxX, Y的分布函数f Z (z)是( )(分数:2.00)A.maxF X (z),F Y (z)B.F X (z)+F。
9、2.下列事件中与 A互不相容的事件是( ) (分数:2.00)A.B.C.D.3.设当事件 A与 B同时发生时,事件 C必发生,则( )(分数:2.00)A.P(C)P(A)+P(B)一 1B.P(C)P(A)+P(B)一 1C.P(C)=P(AB)D.P(C)=P(AB)4.设 A、B、C 三个事件两两独立,则 A、B、C 相互独立的充分必要条件是( )(分数:2.00)A.A与 BC独立B.AB与 AC 独立C.AB与 AC独立D.AB 与 AC 独立5.设随机变量 X的密度函数为 f(x)= (分数:2.00)A.与 a无关,随 的增大而增大B.与 a无关,随 的增大而减小C.与 无关,随 a的增大而增大D.与 无关,随 a的增大而减小6.设随机变量 X服从正态分布 N(0,1),对给定的 (0,1),数 u 满足 PXu =,若P|X|x=,则 x等于( ) (分数:2.00)A.B.C.D.7.设相互独立的两随机变量 x与 y均服从分布 B(1, ),则 Px2Y=( ) (分数:2.00)A.B.C.D.8.设随。
10、2 张 5 元,今从中一次取三张,则得奖金 X 的数学期望 EX 为A6 B7.8 C8.4 D9(分数:2.00)A.B.C.D.3.已知随机变量 X 的概率密度为 f(x)= (分数:2.00)A.B.C.D.4.设随机变量 X 和 Y 均服从 B(1, )分布,且 E(XY)= 记 X 与 Y 的相关系数为 ,则A=1 B=-1 C=0 D= (分数:2.00)A.B.C.D.5.设随机变量 XB(1, ),YB(1, )已知 X 与 Y 的相关系数 =1,则 PX=0,Y=1 的值必为A0 B C (分数:2.00)A.B.C.D.6.设随机事件 A 与 B 互不相容,0P(A)1,0P(B)1,记 (分数:2.00)A.B.C.D.7.已知随机变量 X 与 Y 的相关系数为 且 0,Z=aX+b,则 Y 与 Z 的相关系数仍为 的充要条件是Aa=1,b 为任意实数 Ba0,b 为任意实数Ca0,b 为任意实数 Da0,b 为任意实数(分数:2.00)A.B.C.D.8.假设。
11、N(0,1)的样本,记 ,S 2分别为 X1,X n的样本均值及样本方差,则下列统计量中均值不为 0 的是(分数:4.00)A.B.C.D.3.一大批产品中正、次、废品的比例为 3:2:1,每次取一个,不重复抽取了整个产品的 (分数:4.00)A.B.C.D.4.设 X 是连续型随机变量,其概率密度为 ,则 Y=2X 的概率密度是(分数:4.00)A.B.C.D.5.设 f(x),F(x)分别是连续型随机变量 X 的概率密度函数与分布函数,则对于任意实数 x 都有(分数:4.00)A.PX=x=f(x)B.PX=x=F(x)C.PX=x=0D.0f(x)16.已知随机变量 X 与 Y 有相同的不为零的方差,则 X 与 Y 相关系数等于 1 的充分必要条件是(分数:4.00)A.cov(X+Y,X)=0B.cov(X+Y,Y)=0C.cov(X+Y,X-Y)=0D.cov(X-Y,X)=07.设随机变量 X 的分布函数为 F(x),概率密度 f(x)=af1(x)+bf2(x),其中 f1(x)是正态分布 N(0, 2)的概率密度,f 2(x)是参数为 的指。
12、设随机变量 X的分布函数为 F(x),密度函数为 f(x)=af 1 (x)+bf 2 (x),其中 f 1 (x)是正态分布N(0, 2 )的密度函数,f 2 (x)是参数为 的指数分布的密度函数,已知 F(0)= ,则 ( ) (分数:2.00)A.B.C.D.3.设随机变量 X的分布函数为 F(x),密度函数为 其中 A为常数,则 = ( ) (分数:2.00)A.B.C.D.4.设随机变量 x的密度函数为 (分数:2.00)A.与 a无关,随 增大而增大B.与 a无关,随 增大而减小C.与 无关,随 a增大而增大D.与 无关,随 a增大而减小5.随机变量 X与 Y均服从正态分布,XN(,4 2 ),YN(,5 2 ),记 p 1 =PX4,p 2 =P(Y+5),则 ( )(分数:2.00)A.对任意实数 ,都有 p 1 =p 2B.对任意实数 ,都有 p 1 p 2C.只对 的个别值,才有 p 1 =p 2D.对任意实数 ,都有 p 1 p 26.设 X的概率密度为 ,则 Y=2X的概率密度为 ( ) (分数:2.0。
13、2.设 A和 B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是( )(分数:2.00)A.不相容B.相容C.P(AB)=P(A)P(B)D.P(A 一 B)=P(A)3.对于任意两事件 A和 B,若 P(AB)=0,则( )(分数:2.00)A.B.C.P(A)P(B)=0D.P(AB)=P(A)4.袋中有 5个球,其中白球 2个,黑球 3个。
甲、乙两人依次从袋中各取一球,记 A=“甲取到白球”,B=“乙取到白球”。
若取后放回,此时记 P 1 =P(A),P 2 =P(B); 若取后不放回,此时记 p 3 =P(A),p 4 =P(B)。
则( )(分数:2.00)A.p 1 p 2 p 3 p 4B.p 1 =p 2 p 3 p 4C.p 1 =p 2 =p 3 p 4D.p 1 =p 2 =p 3 =p 45.在全概率公式 P(B)= (分数:2.00)A.A 1 ,A 2 ,A n 两两独立,但不相互独立B.A 1 ,A 2 ,A n 相互独立C.A 1 ,A 2 ,A n 两两互不相容D.A 1 ,A n ,A n 两两互不相容,。
14、 BP(A)-P(B)+P(AB) CP(A)-P(AB) D (分数:0.50)A.B.C.D.3.以 A表示事件“甲种产品畅销,乙种产品滞销”,则 A的对立事件 (分数:0.50)A.“甲种产品滞销,乙种产品畅销”B.“甲,乙两种产品均畅销”C.“甲种产品滞销”D.“甲种产品滞销或乙种产品畅销”4.设 A,B 为两随机事件,且 (分数:0.50)A.P(A+B)=P(A)B.P(AB)=P(A)C.P(B丨 A)=P(B)D.P(B-A)=P(B)-P(A)5.设 A和 B是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 A 不相容 B (分数:0.50)A.B.C.D.6.设当事件 A与 B同时发生时,事件 C必发生,则(分数:0.50)A.P(C)P(A)+P(B)-1B.P(C)P(A)4-P(B)-1C.P(C)=P(AB)D.P(C)=P(AB)7.在电炉上安装了 4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度 t 0 ,电炉就断电以 E表示事件“电炉断电”,设 T (。
15、线性方程组 Ax=b 有解的充分条件是Ar=m Bm=n.Cr=n Dmn(分数:2.00)A.B.C.D.3.设 A 是 mn 矩阵,非齐次线性方程组 Ax=b 有解的充分条件是A秩 r(A)=min(m,n) BA 的行向量组线性无关Cmn DA 的列向量组线性无关(分数:2.00)A.B.C.D.4.设线性方程组 Ax=b 有 m 个方程,n 个未知数且 mn,则正确命题是A若 Ax=0 只有零解,则 Ax=b 必有唯一解B若 Ax=0 有非零解,则 Ax=b 必有无穷多解C若 Ax=b 无解,则 Ax=0 只有零解D若 Ax=b 有无穷多解,则 Ax=0 必有非零解(分数:2.00)A.B.C.D.5.设 A 为 mn 矩阵,下列命题中正确的是A若 A 中有 n 阶子式不为零,则 Ax=0 仅有零解B若 A 中有 n 阶子式不为零,则 Ax=b 必有唯一解C若 A 中有 m 阶子式不为零,则 Ax=0 仅有零解D若 A 中有 m 阶子式不为零,则 Ax=b 必有唯一解(分数:2.00)A。
16、B.C.如果 P()=0,P()=1,则事件 A与 B对立D.如果 P()=0,则事件 A与 B独立3.设 A、B、C 为事件,P(ABC)0,如果 P(AB|C)=P(A|C)P(B|C),则(分数:1.00)A.P(C|AB)=P(C|A)B.P(C|AB)=P(C|B)C.)D.) P(B|AC4.将一枚硬币随意独立掷两次,记事件 A=“第一次掷出正面”,B=“第二次掷出反面”,C=“正面最多掷出一次”,则(分数:1.00)_5.设 A,B 为事件,则下列与 P(分数:1.00)A.+PB.=1不等价的是(A) (B) C.D.6.已知 A与 B是任意两个互不相容的事件,则下列结论正确的是(分数:1.00)A.如果 P()=0,则 P()=0B.如果 P()=0,则 P()=1C.如果 P()=1,则 P()=0D.如果 P()=1,则 P()=17.设 A。
17、条件下在第 j 站停车的概率;() 判断事件“第 i 站不停车”与“第 j 站不停车”是否相互独立(分数:10.00)_2. (分数:10.00)_3.设随机变量 X 服从二项分布 B(n,p),随机变量 Y 为(分数:10.00)_4.设 A、B 是任意两个随机事件,其概率都大于零且小于 1,则下列事件中一定与事件 A 独立的是(分数:10.00)A.B.C.D.5.设 X 是连续型随机变量,且已知 lnX 服从正态分布 N(, 2),求 X 与 X2。
18、1 不等价于 A.P(A-B)=0 B.P(B-A)=0 C.P(AB)=P(A) D.P(AB)=P(B)(分数:2.00)A.B.C.D.3.设 A、B、C 为事件,P(ABC)0,则 P(AB|C)=P(A|C)P(B|C)充要条件是 A.P(A|C)=P() B.P(B|C)=P() C.P(AB|C)=P() D.P(B|AC)=P(|)(分数:2.00)A.B.C.D.4.袋中装有 2n-1 个白球,2n 个黑球,一次取出 n 个球,发现都是同一种颜色,则这种颜色是黑色的概率 A B C D (分数:2.00)A.B.C.D.5.连续抛掷一枚硬币,第 k 次(kn)正面向上在第 n 次抛掷时出现的概率为 A . B . C. D (分数:2.00)A.B.C.D.6.设离散型随机变量 X 服从分布律 PX=k= (分数:2.00)A.B.C.D.7.假设连续函数 F(x)是分布函数且 F(0)=0,则也可以作出新分布函数 A B C D (分数:2.00)A.B.C.。
19、 乘 法 原理 加 法 原 理 ( 两 种 方 法 均 能 完 成 此 事 ) : m+n某 件 事 由 两 种 方 法 来 完 成 , 第 一 种 方 法 可 由 m 种 方 法 完 成 , 第 二 种 方 法 可 由 n种 方 法 来 完 成 , 则 这 件 事 可 由 m+n 种 方 法 来 完 成 。
乘 法 原 理 ( 两 个 步 骤 分 别 不 能 完 成 这 件 事 ) : m n某 件 事 由 两 个 步 骤 来 完 成 , 第 一 个 步 骤 可 由 m 种 方 法 完 成 , 第 二 个 步 骤 可 由 n种 方 法 来 完 成 , 则 这 件 事 可 由 m n 种 方 法 来 完 成 。
( 3) 一 些常 见 排 列 重 复 排 列 和 非 重 复 排 列 ( 有 序 )对 立 事 件 ( 至 少 有 一 个 )顺 序 问 题( 4) 随 机试 验 和 随机 事 件 如 果 一 个 试 验 在 相 同 条 件 下 可 以 重 复 进 行 , 而 每 次 试 验 的 可 能 结 果 不 止 一 个 ,但 在 进 行 一 次 试 验 之 前 却。
20、2.设 A、B、C 是三个相互独立的随机事件,且 0P(C) 1,则在下列给定的四对事件中不相互独立的是(分数:4.00)A.B.C.D.3.对于任意二事件 A 和 B,与 AB=B 不等价的是(分数:4.00)A.B.C.D.4.对于任意二事件 A 和 B(A) 若 AB ,则 A,B 一定独立 (B) 若 AB ,则 A,B 有可能独立(C) 若 AB= ,则 A,B 一定独立 (D) 若 AB= (分数:4.00)A.B.C.D.5.设 A,B 为两个随机事件,且 P(B) 0,P(A|B)=1,则必有(A) P(AB)P(A) (B) P(AB)P(B) (C) P(AB)=P(A) (D) P(AB)=P(B)(分数:4.00)A.B.C.D.6.假设随机变量 X 的绝对值不大于 1, , (分数:10.00)_。